The determination of the shape of a rotating disk under centrifugal loading is considered. It is shown that the governing differential equation for the shape of a rotating thin disk is reducible to a linear equation of second order with variable coefficients. However, the form of this equation is such that it can be treated as an equation of first order thereby facilitating the integration by quadratures. All this is possible without any additional mathematical assumptions so that the results are exact within the limitations of the thin disk theory.

This content is only available via PDF.
You do not currently have access to this content.