Fluid involved in rotative motion (fluid “swirl”) within seals of high speed fluid handling machines is a recognized source of rotor instability. This type of instability leads to the limit cycle of rotor lateral precessional self-excited vibrations of a subsynchronous frequency. The anti-swirl concept is based on the injection of an additional flow to the seal, in the tangential direction, opposite to the direction of the shaft rotation. This flow causes a decrease of the shaft rotation-generated circumferential velocity of the fluid, and improves rotor/seal stability. In this paper the anti-swirl concept is outlined. The mathematical model of the rotor/seal system is analyzed. The analysis and experimental tests establish the physical basis of the anti-swirl concept. The fluid force model, based on the fluid circumferential average velocity of the flow, proves to be an adequate way to represent the seal fluid dynamic forces.

This content is only available via PDF.
You do not currently have access to this content.