Thin spinning annular disks, which have widely varying applications ranging from inertial wheels in spacecraft to computer data storage devices, experience some inherent vibration problems during operation. One of the techniques to control the vibrations of the disk, being analyzed in this paper, is to stiffen it by attaching a reinforcing ring at its outer edge. The present work considers the effect of adding such a ring and discusses the changes in the natural frequencies for a large range of design parameters. The classical plate bending equation based upon small deflection theory which includes the contribution of rotational membrane stresses has been used in the eigenvalue formulation. Numerical results presented in a nondimensional form should be useful in predicting the dynamic response of such a disk stiffened with a circular ring under the spinning conditions.

This content is only available via PDF.
You do not currently have access to this content.