In order to eliminate ground vibration produced by machines such as forge hammers, press machines, etc., this paper presents a systematic and optimal design procedure of an active vibration isolation system which permits rigid support of machines. First, the principle of the active vibration method is presented. Secondly, from the viewpoint of feedback control, the active vibration isolation system with a series-type dynamic compensator is constructed. Thirdly, with the air of a parameter optimization technique, the necessary conditions for optimality of the system are derived. Fourthly, for the purpose of solving the conditions, an iterative algorithm based upon a quasi-Newton method is proposed. Finally, by using the design procedure, the active vibration isolation system is designed, and the effectiveness to isolate the vibration is discussed.

This content is only available via PDF.
You do not currently have access to this content.