Conventional methods exist for obtaining the random vibration response of a finite-element model to “large-scale” turbulence, such as gust loading on an aircraft. However, this loading is random in time only. This paper presents a finite-element method for obtaining the response to “small-scale” turbulence that is random in space as well as time. Boundary-layer turbulence is an example of this type of loading. The method has been used successfully to find the random response of nonuniform, multispan tubes to inhomogeneous turbulent crossflow.

This content is only available via PDF.
You do not currently have access to this content.