A theoretical analysis of the dynamics of a rotor-bearing system with a transversely cracked rotor is presented. The rotating assembly is modeled using finite rotating shaft elements and the presence of a crack is taken into account by a rotating stiffness variation. This stiffness variation is a function of the rotor’s bending curvature at the crack location and is represented by a Fourier series expansion. The resulting parametrically excited system is nonlinear and is analyzed using a perturbation method coupled with an iteration procedure. The system equations are written in terms of complex variables and an associated computer code has been developed for simulation studies. Results obtained by this analysis procedure are compared with previous analytical and experimental work presented by Grabowski.

This content is only available via PDF.
You do not currently have access to this content.