Wave motion of a liquid in a partially filled hollow cylindrical rotor, which rotates at a high speed and is forced to vibrate, is theoretically and experimentally investigated. Main emphasis is placed on the analysis of a large wave motion in the liquid which may cause self-excited vibrations of the rotor. Assuming a thin liquid layer, simplified equations of motion are derived by integration of the governing equations for a two-dimensional flow. Nonlinearity and viscosity are taken into account in the analysis. A large wave motion with a broken wavecrest is analyzed by applying a theory of hydraulic jump. Illustrating typical examples of the theoretical results together with the experimental ones, the dynamic behavior of the liquid motion and the basic relations between the liquid force and the rotor vibration are discussed.

This content is only available via PDF.
You do not currently have access to this content.