Two types of flow-induced vibrations in idling circular saws, random vibration and resonant vibration, were modeled and analyzed. The excitation source, which is the flow pressure fluctuations, was modeled as discrete forces acting at the saw teeth. The response was assumed to be uncoupled from the excitation in the random vibration analysis but coupled with the excitation in the resonant vibration analysis. The random vibration was solved in terms of statistical rms amplitudes and the resonant vibration as a time function. The analytical results captured many characteristics of vibration phenomena observed in idling saw experiments.

This content is only available via PDF.
You do not currently have access to this content.