The problem of optimal nonhomogeneity of a bar subjected to Saint-Venant torsion is formulated as a variational problem so that the necessary conditions for optimality may be derived. In this formulation, the shear modulus function G(x,y) which varies in a jumplike manner is to be optimized with the specified composition of two different elastic materials. It is shown in this paper that a prismatic, nonhomogeneous bar can, in fact, be optimized, and the maximum torsional rigidity is achieved by performing the proposed iterative procedure based on the derived necessary conditions. As a numerical example, the optimal solutions for prismatic bars with cross-sectional shapes of a square and an equilateral triangle are obtained by the computer program which uses the Finite Element Method formulated on the basis of the hybrid stress approach.

This content is only available via PDF.
You do not currently have access to this content.