An analysis for crack instability is presented which utilizes a J-integral-based tearing modulus approach. In particular, a plane stress center-cracked panel which experiences elastically confined yielding is analyzed for a displacement controlled loading. The analysis assumes a compliant loading system, a special case of which leads to a load control mode of loading. The effects of the crack tip plasticity are taken into account by using the strip-yield model of Dugdale-Barenblatt. A method of predicting the amount of crack growth at the onset of instability is presented. Numerical results suggest that under conditions of small-scale yielding, crack instability can be achieved in materials having very low tearing modulus values.

This content is only available via PDF.
You do not currently have access to this content.