Abstract

Although most flows in maritime applications can be modeled as incompressible, for certain phenomena like sloshing, slamming, and cavitation, this approximation falls short. For these events, it is necessary to consider compressibility effects. This paper presents the first step towards a solver for multiphase compressible flows: a single-phase compressible flow solver for perfect gases. The main purpose of this work is code verification of the solver using the method of manufactured solutions. For the sake of completeness, the governing equations are described in detail including the changes to the SIMPLE algorithm used in the incompressible flow solver to ensure mass conservation and pressure-velocity-density coupling. A manufactured solution for laminar subsonic flow was therefore designed. With properly defined boundary conditions, the observed order of grid convergence matches the formal order, so it can be concluded that the flow solver is free of coding mistakes, to the extent tested by the method of manufactured solutions. The performance of the pressure-based SIMPLE solver is quantified by reporting iteration counts for all grids. Furthermore, the use of pressure-weighted interpolation, also known as Rhie-Chow interpolation, to avoid spurious pressure oscillations in incompressible flow, though not strictly necessary for compressible flow, does show some benefits in the low Mach number range.

This content is only available via PDF.
You do not currently have access to this content.