Abstract

The advent of state-of-the-art additive manufacturing (AM) processes has facilitated the manufacturing of complex orthopedic metallic implants such as femoral stems with porous portions based on lattice structures. These struts often have rough and not smooth textured surfaces, for which the irregularities may influence mechanical properties. To make robust predictions about the behavior of this kind of system, the variability effect of its parameters on the stem stiffness must be considered in the processes of modeling and design of porous femoral stems. Also, to improve the credibility of computational models used for hip implant analysis, which involves numerous uncertainties, there is a need for rigorous uncertainty quantification (UQ) framework for proper model assessment following a credible-modeling standard. This work proposes a UQ framework in the presence of sparsely characterized input parameters using the maximum entropy principle for analyzing a femoral stem implant model and thus to clarify how uncertainties impact the key properties of a porous femoral stem. In this study, uncertainties in the strut thickness, pore size, Young's modulus, and external forcing are considered. The UQ framework is validated using experimental results available from literature, following the guidelines set in an ASME standard.

References

References
1.
Learmonth
,
I. D.
,
Young
,
C.
, and
Rorabeck
,
C.
,
2007
, “
The Operation of the Century: Total Hip Replacement
,”
Lancet
,
370
(
9597
), pp.
1508
1519
.10.1016/S0140-6736(07)60457-7
2.
Pivec
,
R.
,
Johnson
,
A. J.
,
Mears
,
S. C.
, and
Mont
,
M. A.
,
2012
, “
Hip Arthroplasty
,”
Lancet
,
380
(
9855
), pp.
1768
1777
.10.1016/S0140-6736(12)60607-2
3.
Dopico-González
,
C.
,
New
,
A. M.
, and
Browne
,
M.
,
2009
, “
Probabilistic Analysis of an Uncemented Total Hip Replacement
,”
Med. Eng. Phys.
,
31
(
4
), pp.
470
476
.10.1016/j.medengphy.2009.01.002
4.
Easley
,
S. K.
,
Pal
,
S.
,
Tomaszewski
,
P. R.
,
Petrella
,
A. J.
,
Rullkoetter
,
P. J.
, and
Laz
,
P. J.
,
2007
, “
Finite Element-Based Probabilistic Analysis Tool for Orthopaedic Applications
,”
Comput. Methods Programs Biomed.
,
85
(
1
), pp.
32
40
.10.1016/j.cmpb.2006.09.013
5.
Bah
,
M. T.
,
Nair
,
P. B.
,
Taylor
,
M.
, and
Browne
,
M.
,
2011
, “
Efficient Computational Method for Assessing the Effects of Implant Positioning in Cementless Total Hip Replacements
,”
J. Biomech.
,
44
(
7
), pp.
1417
1422
.10.1016/j.jbiomech.2010.12.027
6.
Kharmanda
,
G.
,
Shokry
,
A.
,
Antypas
,
I.
, and
El-Hami
,
A.
,
2018
, “
Probabilistic Analysis for Osseointegration Process of Hollow Stem Used in Un-Cemented Hip Prosthesis
,”
J. Uncertainties Reliab. Multiphysical. Syst.
, 2(2), pp.
1
15
.10.21494/ISTE.OP.2018.0295
7.
Nicolella
,
D. P.
,
Thacker
,
B. H.
,
Katoozian
,
H.
, and
Davy
,
D. T.
,
2006
, “
The Effect of Three-Dimensional Shape Optimization on the Probabilistic Response of a Cemented Femoral Hip Prosthesis
,”
J. Biomech.
,
39
(
7
), pp.
1265
1278
.10.1016/j.jbiomech.2005.03.010
8.
Laz
,
P. J.
, and
Browne
,
M.
,
2010
, “
A Review of Probabilistic Analysis in Orthopaedic Biomechanics
,”
Proc. Inst. Mech. Eng., Part H
,
224
(
8
), pp.
927
943
.10.1243/09544119JEIM739
9.
Murr
,
L. E.
,
2017
, “
Open-Cellular Metal Implant Design and Fabrication for Biomechanical Compatibility With Bone Using Electron Beam Melting
,”
J. Mech. Behav. Biomed. Mater.
,
76
, pp.
164
177
.10.1016/j.jmbbm.2017.02.019
10.
Arabnejad
,
S.
,
Johnston
,
R. B.
,
Pura
,
J. A.
,
Singh
,
B.
,
Tanzer
,
M.
, and
Pasini
,
D.
,
2016
, “
High-Strength Porous Biomaterials for Bone Replacement: A Strategy to Assess the Interplay Between Cell Morphology, Mechanical Properties, Bone Ingrowth and Manufacturing Constraints
,”
Acta Biomater.
,
30
, pp.
345
356
.10.1016/j.actbio.2015.10.048
11.
Simoneau
,
C.
,
Terriault
,
P.
,
Jetté
,
B.
,
Dumas
,
M.
, and
Brailovski
,
V.
,
2017
, “
Development of a Porous Metallic Femoral Stem: Design, Manufacturing, Simulation and Mechanical Testing
,”
Mater. Des.
,
114
, pp.
546
556
.10.1016/j.matdes.2016.10.064
12.
Jetté
,
B.
,
Brailovski
,
V.
,
Dumas
,
M.
,
Simoneau
,
C.
, and
Terriault
,
P.
,
2018
, “
Femoral Stem Incorporating a Diamond Cubic Lattice Structure: Design, Manufacture and Testing
,”
J. Mech. Behav. Biomed. Mater.
,
77
, pp.
58
72
.10.1016/j.jmbbm.2017.08.034
13.
Park
,
J.
,
Sutradhar
,
A.
,
Shah
,
J. J.
, and
Paulino
,
G. H.
,
2018
, “
Design of Complex Bone Internal Structure Using Topology Optimization With Perimeter Control
,”
Comput. Biol. Med.
,
94
, pp.
74
84
.10.1016/j.compbiomed.2018.01.001
14.
Al-Tamimi
,
A. A.
,
Fernandes
,
P. R. A.
,
Peach
,
C.
,
Cooper
,
G.
,
Diver
,
C.
, and
Bartolo
,
P. J.
,
2017
, “
Metallic Bone Fixation Implants: A Novel Design Approach for Reducing the Stress Shielding Phenomenon
,”
Virtual Phys. Prototyping
,
12
(
2
), pp.
141
151
.10.1080/17452759.2017.1307769
15.
Gorguluarslan
,
R. M.
,
Choi
,
S.-K.
, and
Saldana
,
C. J.
,
2017
, “
Uncertainty Quantification and Validation of 3D Lattice Scaffolds for Computer-Aided Biomedical Applications
,”
J. Mech. Behav. Biomed. Mater.
,
71
, pp.
428
440
.10.1016/j.jmbbm.2017.04.011
16.
Cunha
,
A.
,
2017
, “
Modeling and Quantification of Physical Systems Uncertainties in a Probabilistic Framework
,”
Probabilistic Prognostics and Health Management of Energy Systems
,
S.
Ekwaro-Osire
,
A.
Gonçalves
, and
F. M.
Alemayehu
, eds.,
Springer
,
Cham, Switzerland
, pp.
127
156
.
17.
ASME Standard
,
2018
,
Assessing Credibility of Computational Modeling Through Verification and Validation: Application to Medical Devices
, Vol.
40
,
ASME V&V
,
New York
, Standard No. ASME V&V
40
2018
.
18.
Morrison
,
T. M.
,
Hariharan
,
P.
,
Funkhouser
,
C. M.
,
Afshari
,
P.
,
Goodin
,
M.
, and
Horner
,
M.
,
2019
, “
Assessing Computational Model Credibility Using a Risk-Based Framework: Application to Hemolysis in Centrifugal Blood Pumps
,”
ASAIO J.
,
65
(
4
), pp.
349
360
.10.1097/MAT.0000000000000996
19.
Parvinian
,
B.
,
Pathmanathan
,
P.
,
Daluwatte
,
C.
,
Yaghouby
,
F.
,
Gray
,
R. A.
,
Weininger
,
S.
,
Morrison
,
T. M.
, and
Scully
,
C. G.
,
2019
, “
Credibility Evidence for Computational Patient Models Used in the Development of Physiological Closed-Loop Controlled Devices for Critical Care Medicine
,”
Front. Physiol.
,
10
, p.
220
.10.3389/fphys.2019.00220
20.
Hariharan
,
P.
,
D'Souza
,
G. A.
,
Horner
,
M.
,
Morrison
,
T. M.
,
Malinauskas
,
R. A.
, and
Myers
,
M. R.
,
2017
, “
Use of the FDA Nozzle Model to Illustrate Validation Techniques in Computational Fluid Dynamics (CFD) Simulations
,”
PLoS One
,
12
(
6
), p.
e0178749
.10.1371/journal.pone.0178749
21.
Pathmanathan
,
P.
,
Cordeiro
,
J. M.
, and
Gray
,
R. A.
,
2019
, “
Comprehensive Uncertainty Quantification and Sensitivity Analysis for Cardiac Action Potential Models
,”
Front. Physiol.
,
10
, p.
721
.10.3389/fphys.2019.00721
22.
Harrysson
,
O. L. A.
,
Cansizoglu
,
O.
,
Marcellin-Little
,
D. J.
,
Cormier
,
D. R.
, and
West
,
H. A.
,
2008
, “
Direct Metal Fabrication of Titanium Implants With Tailored Materials and Mechanical Properties Using Electron Beam Melting Technology
,”
Mater. Sci. Eng. C
,
28
(
3
), pp.
366
373
.10.1016/j.msec.2007.04.022
23.
Egan
,
P. F.
,
2019
, “
Integrated Design Approaches for 3D Printed Tissue Scaffolds: Review and Outlook
,”
Materials
,
12
(
15
), p.
2355
.10.3390/ma12152355
24.
Campoli
,
G.
,
Borleffs
,
M. S.
,
Amin Yavari
,
S.
,
Wauthle
,
R.
,
Weinans
,
H.
, and
Zadpoor
,
A. A.
,
2013
, “
Mechanical Properties of Open-Cell Metallic Biomaterials Manufactured Using Additive Manufacturing
,”
Mater. Des.
,
49
, pp.
957
965
.10.1016/j.matdes.2013.01.071
25.
International Organization for Standardization
, 2010, “
Implants for Surgery–Partial and Total Hip Joint Prostheses–Part 4: Determination of Endurance Properties and Performance of Stemmed Femoral Components
,” ISO,
Geneva, Switzerland
, Standard No. ISO
7206
4
.
26.
Taylor
,
M.
, and
Prendergast
,
P. J.
,
2015
, “
Four Decades of Finite Element Analysis of Orthopaedic Devices: Where Are We Now and What Are the Opportunities?
,”
J. Biomech.
,
48
(
5
), pp.
767
778
.10.1016/j.jbiomech.2014.12.019
27.
Soize
,
C.
,
2013
, “
Stochastic Modeling of Uncertainties in Computational Structural Dynamics—Recent Theoretical Advances
,”
J. Sound Vib.
,
332
(
10
), pp.
2379
2395
.10.1016/j.jsv.2011.10.010
28.
Soize
,
C.
,
2017
,
Uncertainty Quantification: An Accelerated Course With Advanced Applications in Computational Engineering
,
Springer
,
Cham, Switzerland
.
29.
Oden
,
J. T.
,
2017
, “
Foundations of Predictive Computational Science
,” The University of Texas at Austin, Austin, TX, ICES Report No.
17
01
.
30.
Shannon
,
C. E.
,
1948
, “
A Mathematical Theory of Communication
,”
Bell Syst. Tech. J.
,
27
(
3
), pp.
379
423
.10.1002/j.1538-7305.1948.tb01338.x
31.
Kapur
,
J. N.
, and
Kesavan
,
H. K.
,
1992
, “
Entropy Optimization Principles and Their Applications
,”
Entropy and Energy Dissipation in Water Resources
,
V. P.
Singh
, and
M.
Fiorentino
, eds., Springer,
Dordrecht, The Netherlands
, pp.
3
20
.
32.
Yosibash
,
Z.
,
Wille
,
H.
, and
Rank
,
E.
,
2015
, “
Stochastic Description of the Peak Hip Contact Force During Walking Free and Going Upstairs
,”
J. Biomech.
,
48
(
6
), pp.
1015
1022
.10.1016/j.jbiomech.2015.01.041
33.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T. Q.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Compos., Part B
,
143
, pp.
172
196
.10.1016/j.compositesb.2018.02.012
34.
Gibson
,
L. J.
,
Ashby
,
M. F.
, and
Harley
,
B. A.
,
2010
,
Cellular Materials in Nature and Medicine
,
Cambridge University Press
,
Cambridge, UK
.
35.
Slot
,
R. M. M.
,
Sørensen
,
J. D.
,
Sudret
,
B.
,
Svenningsen
,
L.
, and
Thøgersen
,
M. L.
,
2020
, “
Surrogate Model Uncertainty in Wind Turbine Reliability Assessment
,”
Renewable Energy
,
151
, pp.
1150
1162
.10.1016/j.renene.2019.11.101
36.
Aycock
,
K. I.
,
Rebelo
,
N.
, and
Craven
,
B. A.
,
2020
, “
Method of Manufactured Solutions Code Verification of Elastostatic Solid Mechanics Problems in a Commercial Finite Element Solver
,”
Comput. Struct.
,
229
, p.
106175
.10.1016/j.compstruc.2019.106175
37.
ISO
,
2008
, “
Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement
,”
International Organization for Standardization
,
Paris, France
, Standard No. ISO/IEC Guide
98
3
.
38.
ANSYS
,
2019
, “
ANSYS Workbench Verification Manual
,”
ANSYS
,
Canonsburg, PA
.
39.
Cunha
, Jr.
,
A.
, “
MaxEnt—Maximum Entropy Code
,” GitHub, GitHub Repository, accessed Sept. 13, 2020, https://americocunhajr.github.io/MaxEnt
40.
ASME
,
2012
, “
An Illustration of the Concepts of Verification and Validation in Computational Solid Mechanics
,”
ASME
,
New York
, Standard No. ASME V&V 10.1.
41.
Gillies
,
R. M.
,
Morberg
,
P. H.
,
Bruce
,
W. J. M.
,
Turnbull
,
A.
, and
Walsh
,
W. R.
,
2002
, “
The Influence of Design Parameters on Cortical Strain Distribution of a Cementless Titanium Femoral Stem
,”
Med. Eng. Phys.
,
24
(
2
), pp.
109
114
.10.1016/S1350-4533(01)00124-2
42.
Frost
,
H. M.
,
1994
, “
Wolff Law and Bones Structural Adaptations to Mechanical Usage—An Overview for Clinician
,”
Angle Orthodontist
,
64
(
3
), pp.
175
188
.10.1043/0003-3219(1994)064<0175:WLABSA>2.0.CO;2
43.
Huiskes
,
R.
,
Weinans
,
H.
, and
Rietbergen
,
B. Van
,
1992
, “
The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effects of Flexible Materials
,”
Clin. Orthop. Relat. Res.
, (
274
), pp.
124
134
.
44.
FDA
,
2016
, “
Hip Joint Metal/Polymer/Metal Semi-Constrained Porous- Coated Uncemented Prosthesis
,”
Food and Drugs Administration, Department of Health and Human Services, Medical devices
,
Silver Spring, MD
, Standard No. 21CFR888.3358.
45.
Martin
,
B.
,
1984
, “
Porosity and Specific Surface of Bone
,”
Crit. Rev. Biomed. Eng.
,
10
(
3
), pp.
179
222
.https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9572744
46.
Coelho
,
P. G.
,
Fernandes
,
P. R.
,
Rodrigues
,
H. C.
,
Cardoso
,
J. B.
, and
Guedes
,
J. M.
,
2009
, “
Numerical Modeling of Bone Tissue Adaptation-A Hierarchical Approach for Bone Apparent Density and Trabecular Structure
,”
J. Biomech.
,
42
(
7
), pp.
830
837
.10.1016/j.jbiomech.2009.01.020
47.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
London
.
You do not currently have access to this content.