Abstract

Solution verification methods for anomalous waves in inviscid and viscous van der Waals gases are presented. Anomalous waves are admissible in a single gas phase material when isentropes are concave, rendering the sound speed to have the unusual feature of decreasing with increasing density. The anomalous waves considered include rarefaction shocks and continuous compression fans. A previously known exact solution of inviscid continuous fans with a van der Waals equation of state is applied to anomalous waves. An exact solution for viscous shocks in an ideal gas is described and utilized for verification of the viscous numerical solutions. Solutions and simulations of viscous and inviscid van der Waals gases in shock tubes are presented with both conventional and anomalous waves. Shock tube solutions are used for verification of numerical simulations. Highly resolved viscous solutions are obtained with a simple explicit Euler time advancement scheme coupled with a second-order central spatial discretization. Inviscid simulations are performed with a third-order Runge–Kutta method in time and a fifth-order mapped weighted essentially nonoscillatory (WENO5M) discretization. The WENO5M method is novelly supplemented with a global Lax–Friedrichs flux-splitting in space, as local flux-splitting methods fail when changes in the sound speed are nonmonotonic.

References

1.
Pielemeier
,
K. R.
, and
Powers
,
J. M.
,
2022
, “
Anomalous Waves in Non-Ideal Detonation Dynamics
,”
AIAA
Paper No. 2022-0396.10.2514/6.2022-0396
2.
Wendroff
,
B.
,
1972
, “
The Riemann Problem for Materials With Non-Convex Equations of State: I, Isentropic Flow
,”
J. Math. Anal. Appl.
,
38
(
2
), pp.
454
466
.10.1016/0022-247X(72)90103-5
3.
Wendroff
,
B.
,
1972
, “
The Riemann Problem for Materials With Non-Convex Equations of State: II, General Flow
,”
J. Math. Anal. Appl.
,
38
, pp.
640
658
.10.1016/0022-247X(72)90075-3
4.
Heuzé
,
O.
,
Jaouen
,
S.
, and
Jourdren
,
H.
,
2009
, “
Dissipative Issue of High-Order Shock Capturing Schemes With Non-Convex Equations of State
,”
J. Comput. Phys.
,
228
(
3
), pp.
833
860
.10.1016/j.jcp.2008.10.005
5.
Bethe
,
H. A.
,
1942
, “
The Theory of Shock Waves for an Arbitrary Equation of State
,” Office of Scientific Research and Development, Washington, DC, Report No. 545.
6.
Zel'dovich
,
Y. B.
,
1946
, “
On the Possibility of Rarefaction Shock Waves
,”
Zh. Eksp. Teor. Fiz.
,
16
(
4
), pp.
363
364
.10.1515/9781400862979.152
7.
Thompson
,
P. A.
,
1971
, “
A Fundamental Derivative in Gasdynamics
,”
Phys. Fluids
,
14
(
9
), pp.
1843
1849
.10.1063/1.1693693
8.
Lambrakis
,
K.
, and
Thompson
,
P. A.
,
1972
, “
Existence of Real Fluids With a Negative Fundamental Derivative γ
,”
Phys. Fluids
,
15
(
5
), pp.
933
935
.10.1063/1.1694004
9.
Cramer
,
M. S.
,
1989
, “
Negative Nonlinearity in Selected Fluorocarbons
,”
Phys. Fluids
,
1
(
11
), pp.
1894
1897
.10.1063/1.857514
10.
Fergason
,
S. H.
,
Ho
,
T. L.
,
Argrow
,
B. M.
, and
Emanuel
,
G.
,
2001
, “
Theory for Producing a Single-Phase Rarefaction Shock Wave in a Shock Tube
,”
J. Fluid Mech.
,
445
, pp.
37
54
.10.1017/S0022112001005444
11.
Fergason
,
S. H.
,
Guardone
,
A.
, and
Argrow
,
B. M.
,
2003
, “
Construction and Validation of a Dense Gas Shock Tube
,”
J. Thermophys. Heat Transfer
,
17
(
3
), pp.
326
333
.10.2514/2.6789
12.
Colonna
,
P.
, and
Silva
,
P.
,
2003
, “
Dense Gas Thermodynamic Properties of Single and Multicomponent Fluids for Fluid Dynamics Simulations
,”
ASME J. Fluids Eng.
,
125
(
3
), pp.
414
427
.10.1115/1.1567306
13.
Colonna
,
P.
, and
Rebay
,
S.
,
2004
, “
Numerical Simulation of Dense Gas Flows on Unstructured Grids With an Implicit High Resolution Upwind Euler Solver
,”
Int. J. Numer. Methods Fluids
,
46
(
7
), pp.
735
765
.10.1002/fld.762
14.
Colonna
,
P.
, and
Guardone
,
A.
,
2007
, “
Siloxanes: A New Class of Candidate Bethe-Zel'dovich-Thompson Fluids
,”
Phys. Fluids
,
19
(
8
), p.
086102
.10.1063/1.2759533
15.
Colonna
,
P.
, and
Guardone
,
A.
,
2006
, “
Molecular Interpretation of Nonclassical Gas Dynamics of Dense Vapors Under the van der Waals Model
,”
Phys. Fluids
,
18
(
5
), p.
056101
.10.1063/1.2196095
16.
Harink
,
J.
,
Guardone
,
A.
, and
Colonna
,
P.
,
2009
, “
The Influence of Molecular Complexity on Expanding Flows of Ideal and Dense Gases
,”
Phys. Fluids
,
21
(
8
), p.
086101
.10.1063/1.3194308
17.
Emanuel
,
G.
,
2015
,
Analytical Fluid Dynamics
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
18.
Powers
,
J. M.
,
2024
,
Mechanics of Fluids
,
Cambridge University Press
,
Cambridge, UK
.
19.
Cramer
,
M. S.
, and
Sen
,
R.
,
1986
, “
Shock Formation in Fluids Having Embedded Regions of Negative Nonlinearity
,”
Phys. Fluids
,
29
(
7
), pp.
2181
2191
.10.1063/1.865555
20.
Cramer
,
M. S.
, and
Crickenberger
,
A. B.
,
1991
, “
The Dissipative Structure of Shock Waves in Dense Gases
,”
J. Fluid Mech.
,
223
(
1
), pp.
325
355
.10.1017/S0022112091001441
21.
Cramer
,
M. S.
,
1989
, “
Shock Splitting in Single-Phase Gases
,”
J. Fluid Mech.
,
199
, pp.
281
296
.10.1017/S0022112089000388
22.
Guardone
,
A.
,
Zamfirescu
,
C.
, and
Colonna
,
P.
,
2007
, “
Maximum Intensity of Rarefaction Shock Waves for Dense Gases
,”
J. Fluid Mech.
,
642
, pp.
127
146
.10.1017/S0022112009991716
23.
Zamfirescu
,
C.
,
Guardone
,
A.
, and
Colonna
,
P.
,
2008
, “
Admissibility Region for Rarefaction Shock Waves in Dense Gases
,”
J. Fluid Mech.
,
599
, pp.
363
381
.10.1017/S0022112008000207
24.
Kluwick
,
A.
, and
Meyer
,
G.
,
2010
, “
Shock Regularization in Dense Gases by Viscous-Inviscid Interactions
,”
J. Fluid Mech.
,
644
, pp.
473
507
.10.1017/S0022112009992618
25.
Cramer
,
M. S.
, and
Tarkenton
,
G. M.
,
1992
, “
Transonic Flows of Bethe-Zel'dovich-Thompson Fluids
,”
J. Fluid Mech.
,
240
(
1
), pp.
197
228
.10.1017/S0022112092000077
26.
Cinnella
,
P.
, and
Congedo
,
P. M.
,
2005
, “
Numerical Solver for Dense Gas Flows
,”
AIAA J.
,
43
(
11
), pp.
2458
2461
.10.2514/1.16335
27.
Congedo
,
P. M.
,
Corre
,
C.
, and
Cinnella
,
P.
,
2007
, “
Airfoil Shape Optimization for Transonic Flows of Bethe-Zel'dovich-Thompson Fluids
,”
AIAA J.
,
45
(
6
), pp.
1303
1316
.10.2514/1.21615
28.
Brown
,
B. P.
, and
Argrow
,
B. M.
,
2000
, “
Application of Bethe-Zel'dovich-Thomson Fluids in Organic Rankine Cycle Engines
,”
J. Propul. Power
,
16
(
6
), pp.
1118
1124
.10.2514/2.5686
29.
Guardone
,
A.
,
Colonna
,
P.
,
Pini
,
M.
, and
Spinelli
,
A.
,
2024
, “
Nonideal Compressible Fluid Dynamics of Dense Vapors and Supercritical Fluids
,”
Annu. Rev. Fluid Mech.
,
56
(
1
), pp.
241
269
.10.1146/annurev-fluid-120720-033342
30.
Rider
,
W. J.
, and
Bates
,
J. W.
,
2001
, “
A High-Resolution Godunov Method for Modeling Anomalous Fluid Behavior
,”
Godunov Methods: Theory and Applications
,
E. F.
Toro
, ed.,
Kluwer Academic
,
New York
, pp.
717
723
.
31.
Bates
,
J. W.
, and
Montgomery
,
D. C.
,
1999
, “
Some Numerical Studies of Exotic Shock Wave Behavior
,”
Phys. Fluids
,
11
(
2
), pp.
462
475
.10.1063/1.869862
32.
Sirignano
,
W. A.
,
2018
, “
Normal Shocks With High Upstream Pressure
,”
Phys. Rev. Fluids
,
3
(
9
), p.
093401
.10.1103/PhysRevFluids.3.093401
33.
Wang
,
J. C. H.
, and
Hickey
,
J. P.
,
2020
, “
Analytical Solutions to Shock and Expansion Waves for Non-Ideal Equations of State
,”
Phys. Fluids
,
32
, p.
086105
.10.1063/5.0015531
34.
Quartapelle
,
L.
,
Castelletti
,
L.
,
Guardone
,
A.
, and
Quaranta
,
G.
,
2003
, “
Solution of the Riemann Problem of Classical Gasdynamics
,”
J. Comput. Phys.
,
190
(
1
), pp.
118
140
.10.1016/S0021-9991(03)00267-5
35.
Vincenti
,
W. G.
, and
Kruger
,
C. H.
,
1965
,
Introduction to Physical Gas Dynamics
,
Wiley
,
New York
.
36.
Müller
,
I.
, and
Ruggeri
,
T.
,
1998
,
Rational Extended Thermodynamics
, 2nd ed.,
Springer
,
New York
.
37.
Liepmann
,
H. W.
, and
Roshko
,
A.
,
2001
,
Elements of Gasdynamics
,
Dover Publications
,
Mineola, NY
.
38.
Guardone
,
A.
,
Vigevano
,
L.
, and
Argrow
,
B. M.
,
2004
, “
Assessment of Thermodynamic Models for Dense Gas Dynamics
,”
Phys. Fluids
,
16
(
11
), pp.
3878
3887
.10.1063/1.1786791
39.
Guardone
,
A.
, and
Argrow
,
B. M.
,
2005
, “
Nonclassical Gasdynamic Region of Selected Fluorocarbons
,”
Phys. Fluids
,
17
, p.
116102
.10.1063/1.2131922
40.
Dunlop
,
P. J.
,
1994
, “
Viscosities of a Series of Gaseous Fluorocarbons at 25 °C
,”
J. Chem. Phys.
,
100
(
4
), pp.
3149
3151
.10.1063/1.466405
41.
Henrick
,
A. K.
,
Aslam
,
T. D.
, and
Powers
,
J. M.
,
2005
, “
Mapped Weighted Essentially Non-Oscillatory Schemes: Achieving Optimal Order Near Critical Points
,”
J. Comput. Phys.
,
207
(
2
), pp.
542
567
.10.1016/j.jcp.2005.01.023
42.
Shu
,
C. W.
,
1992
, “
A Numerical Method for Systems of Conservation Laws Mixed Type Admitting Hyperbolic Flux Splitting
,”
J. Comput. Phys.
,
100
(
2
), pp.
424
429
.10.1016/0021-9991(92)90249-X
43.
Menikoff
,
R.
, and
Plohr
,
B. J.
,
1989
, “
The Riemann Problem for Fluid Flow of Real Materials
,”
Rev. Mod. Phys.
,
61
(
1
), pp.
75
130
.10.1103/RevModPhys.61.75
44.
Taylor
,
G. I.
,
1910
, “
The Conditions Necessary for Discontinuous Motion in Gases
,”
Proc. R. Soc. London A
,
84
(
571
), pp.
371
377
.10.1098/rspa.1910.0081
45.
Becker
,
R.
,
1922
, “
Shock Wave and Detonation
,”
Z. Phys.
,
8
, pp.
321
362
.10.1007/BF01329605
46.
Morduchow
,
M.
, and
Libby
,
P. A.
,
1949
, “
On a Complete Solution of the One-Dimensional Flow Equations of a Viscous, Heat Conducting, Compressible Gas
,”
J. Aeronaut. Sci.
,
16
(
11
), pp.
674
684
.10.2514/8.11882
47.
von Mises
,
R.
,
1950
, “
On the Thickness of a Steady Shock Wave
,”
J. Aeronaut. Sci.
,
17
(
9
), pp.
551
554
.10.2514/8.1723
48.
Gilbarg
,
D.
, and
Paolucci
,
D.
,
1953
, “
The Structure of Shock Waves in the Continuum Theory of Fluids
,”
J. Ration. Mech. Anal.
,
2
(
4
), pp.
617
642
.10.1512/iumj.1953.2.52031
49.
Ianelli
,
J.
,
2012
, “
An Exact Non-Linear Navier-Stokes Compressible-Flow Solution for CFD Code Verification
,”
Int. J. Numer. Methods Fluids
,
72
(
2
), pp.
157
176
.
50.
Myong
,
R. S.
,
2014
, “
Analytical Solutions of Shock Structure Thickness and Asymmetry in Navier-Stokes/Fourier Framework
,”
AIAA J.
,
52
(
5
), pp.
1075
1080
.10.2514/1.J052583
51.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2007
,
Transport Phenomena
, revised 2nd ed.,
Wiley
,
New York
.
52.
Ghia
,
U.
,
Bayyuk
,
S.
,
Benek
,
J.
,
Bryden
,
K.
,
Bush
,
R.
,
Conlisk
,
T.
,
Habchi
,
S.
, et al.,
2021
, “
Recommended Practice for Code Verification in Computational Fluid Dynamics
,”
AIAA
Paper No. R-141-2021.10.2514/6.R-141-2021
53.
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2017
,
Fundamentals of Heat and Mass Transfer
, 8th ed.,
Wiley
,
Hoboken, NJ
.
54.
von Mises
,
R.
,
1958
,
Mathematical Theory of Compressible Fluid Flow
,
Academic Press
,
New York
.
55.
Courant
,
R.
, and
Friedrichs
,
K. O.
,
1948
,
Supersonic Flow and Shock Waves
,
Interscience Publishers
,
New York
.
56.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
57.
Banks
,
J. W.
,
Aslam
,
T.
, and
Rider
,
W. J.
,
2008
, “
On Sub-Linear Convergence for Linearly Degenerate Waves in Capturing Schemes
,”
J. Comput. Phys.
,
227
(
14
), pp.
6985
7002
.10.1016/j.jcp.2008.04.002
You do not currently have access to this content.