Abstract

In the realm of reliability analysis methods, the first-order reliability method (FORM) exhibits excellent computational accuracy and efficiency in linear problems. However, it fails to deliver satisfactory performance in nonlinear ones. Therefore, this paper proposes an approximate integral method (AIM) to calculate the failure probability of nonlinear problems. First, based on the most probable point (MPP) of failure and the reliability index β obtained from the FORM, the limit state function (LSF) can be equivalent to an approximate parabola (AP), which divides the hypersphere space into feasible and failure domains. Secondly, through the ratio of the approximate region occupied by a parabolic curve to the entire hypersphere region, the failure probability can be calculated by integration. To avoid the computational complexity in the parabolic approximate area due to high dimensionality, this paper employs a hyper-rectangle, constructed from chord lengths corresponding to different curvatures, as a substitute for the parabolic approximate area. Additionally, a function is utilized to adjust this substitution, ensuring accuracy in the calculation. Finally, compared with the calculated result of the Monte Carlo simulation (MCS) and the FORM, the feasibility of this method can be demonstrated through five numerical examples.

References

1.
Wang
,
Z.
, and
Wang
,
P.
,
2012
, “
A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121007
.10.1115/1.4007931
2.
Wang
,
Z.
, and
Wang
,
P.
,
2013
, “
Reliability-Based Design Optimization Using a Maximum Confidence Enhancement Based Sequential Sampling Approach
,”
Proceedings of 10th World Congress on Structural and Multidisciplinary Optimization
,
Orlando, FL
, May 19–24, pp.
1
11
.https://mae.ufl.edu/mdo/Papers/5160.pdf
3.
Li
,
M.
, and
Wang
,
Z.
,
2019
, “
Surrogate Model Uncertainty Quantification for Reliability-Based Design Optimization
,”
Reliab. Eng. Syst. Saf.
,
192
, p.
106432
.10.1016/j.ress.2019.03.039
4.
Li
,
M.
,
Wang
,
Z.
, and
Wang
,
P.
,
2019
, “
An Equivalent Reliability Index Approach for Surrogate Model-Based RBDO
,”
AIAA
Paper No. 2019-1223. 10.2514/6.2019-1223
5.
Wu
,
Z.
,
Chen
,
Z.
,
Chen
,
G.
,
Li
,
X.
,
Jiang
,
C.
,
Gan
,
X.
,
Qiu
,
H.
, and
Gao
,
L.
,
2023
, “
A Novel Probabilistic Feasible Region Method for Reliability-Based Design Optimization With Varying Standard Deviation
,”
J. Mech. Sci. Technol.
,
37
(
9
), pp.
4787
4800
.10.1007/s12206-023-0831-9
6.
Chen
,
Z. Z.
,
Qiu
,
H. B.
,
Hao
,
H. Y.
, and
Xiong
,
H. D.
,
2012
, “
A Reliability Index Based Decoupling Method for Reliability-Based Design Optimization
,”
Adv. Mater. Res.
,
544
, pp.
223
228
.10.4028/www.scientific.net/AMR.544.223
7.
Chen
,
Z.
,
Li
,
X.
,
Chen
,
G.
,
Gao
,
L.
,
Qiu
,
H.
, and
Wang
,
S.
,
2018
, “
A Probabilistic Feasible Region Approach for Reliability-Based Design Optimization
,”
Struct. Multidiscip. Optim.
,
57
(
1
), pp.
359
372
.10.1007/s00158-017-1759-4
8.
Wang
,
Z.
, and
Wang
,
P.
,
2015
, “
An Integrated Performance Measure Approach for System Reliability Analysis
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021406
.10.1115/1.4029222
9.
Naess
,
A.
,
Leira
,
B. J.
, and
Batsevych
,
O.
,
2009
, “
System Reliability Analysis by Enhanced Monte Carlo Simulation
,”
Struct. Saf.
,
31
(
5
), pp.
349
355
.10.1016/j.strusafe.2009.02.004
10.
Roy
,
A.
, and
Chakraborty
,
S.
,
2023
, “
Support Vector Machine in Structural Reliability Analysis: A Review
,”
Reliab. Eng. Syst. Saf.
,
233
, p.
109126
.10.1016/j.ress.2023.109126
11.
Li
,
X.
,
Zhu
,
H.
,
Chen
,
Z.
,
Ming
,
W.
,
Cao
,
Y.
,
He
,
W.
, and
Ma
,
J.
,
2022
, “
Limit State Kriging Modeling for Reliability-Based Design Optimization Through Classification Uncertainty Quantification
,”
Reliab. Eng. Syst. Saf.
,
224
, p.
108539
.10.1016/j.ress.2022.108539
12.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
,
1982
, “
First-Order Concepts in System Reliability
,”
Struct. Saf.
,
1
(
3
), pp.
177
188
.10.1016/0167-4730(82)90024-8
13.
Xie
,
B.
,
Peng
,
C.
, and
Wang
,
Y.
,
2023
, “
Combined Relevance Vector Machine Technique and Subset Simulation Importance Sampling for Structural Reliability
,”
Appl. Math. Modell.
,
113
, pp.
129
143
.10.1016/j.apm.2022.09.010
14.
Qian
,
H. M.
,
Wei
,
J.
, and
Huang
,
H. Z.
,
2023
, “
Structural Fatigue Reliability Analysis Based on Active Learning Kriging Model
,”
Int. J. Fatigue
,
172
, p.
107639
.10.1016/j.ijfatigue.2023.107639
15.
Lima
,
J. P. S.
,
Evangelista Jr
,
F.
, and
Soares
,
C. G.
,
2023
, “
Hyperparameter-Optimized Multi-Fidelity Deep Neural Network Model Associated With Subset Simulation for Structural Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
239
, p.
109492
.10.1016/j.ress.2023.109492
16.
Wang
,
Z. Z.
, and
Goh
,
S. H.
,
2022
, “
A Maximum Entropy Method Using Fractional Moments and Deep Learning for Geotechnical Reliability Analysis
,”
Acta Geotech.
,
17
(
4
), pp.
1147
1166
.10.1007/s11440-021-01326-2
17.
Li
,
W.
,
Geng
,
R.
, and
Chen
,
S.
,
2023
, “
CSP-Free Adaptive Kriging Surrogate Model Method for Reliability Analysis With Small Failure Probability
,”
Reliab. Eng. Syst. Saf.
,
243
, p.
109898
.10.1016/j.ress.2023.109898
18.
Xu
,
Z-J.
,
Zheng
,
J-J.
,
Bian
,
X-Y.
, and
Liu
,
Y.
,
2013
, “
A Modified Method to Calculate Reliability Index Using Maximum Entropy Principle
,”
J. Central South Univ.
,
20
(
4
), pp.
1058
1063
.10.1007/s11771-013-1584-x
19.
Lin
,
P. T.
,
Gea
,
H. C.
, and
Jaluria
,
Y.
,
2011
, “
A Modified Reliability Index Approach for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
133
(
4
), p.
091401
.10.1115/DETC2009-87804
20.
Lu
,
H. T.
,
Dong
,
Y. G.
, and
Wu
,
F. Y.
,
2014
, “
Study of Computation for Structural Reliability Index Based on Penalty Function Method
,”
Appl. Mech. Mater.
,
635–637
, pp.
443
446
.10.4028/www.scientific.net/AMM.635-637.443
21.
Jiang
,
C.
,
Han
,
S.
,
Ji
,
M.
, and
Han
,
X.
,
2015
, “
A New Method to Solve the Structural Reliability Index Based on Homotopy Analysis
,”
Acta Mech.
,
226
(
4
), pp.
1067
1083
.10.1007/s00707-014-1226-x
22.
Chen
,
Z.
,
Wu
,
Z.
,
Li
,
X.
,
Chen
,
G.
,
Chen
,
G.
,
Gao
,
L.
, and
Qiu
,
H.
,
2019
, “
An Accuracy Analysis Method for First-Order Reliability Method
,”
Proc. Inst. Mech. Eng., Part C
,
233
(
12
), pp.
4319
4327
.10.1177/0954406218813389
23.
Du
,
X.
,
2008
, “
Unified Uncertainty Analysis by the First Order Reliability Method
,”
ASME J. Mech. Des.
,
130
(
9
), p.
091401
.10.1115/1.2943295
24.
Low
,
B. K.
, and
Tang
,
W. H.
,
2007
, “
Efficient Spreadsheet Algorithm for First-Order Reliability Method
,”
J. Eng. Mech.
,
133
(
12
), pp.
1378
1387
.10.1061/(ASCE)0733-9399(2007)133:12(1378)
25.
Park
,
Y.-T.
,
Okuda
,
S.
, and
Yonezawa
,
M.
,
2000
, “
Structural Reliability Assessment by Numerical Integration Based on Hypersphere Division Method
,”
Trans. Jpn. Soc. Mech. Eng. Ser. A
,
66
(
652
), pp.
2136
2143
.10.1299/kikaia.66.2136
26.
Chen
,
G.
, and
Yang
,
D.
,
2019
, “
Direct Probability Integral Method for Stochastic Response Analysis of Static and Dynamic Structural Systems
,”
Comput. Methods Appl. Mech. Eng.
,
357
, p.
112612
.10.1016/j.cma.2019.112612
27.
Chen
,
Z. Z.
,
Huang
,
D. Y.
,
Li
,
X. K
, et al.,
2023
, “
A New Curved Surface Integral Method for Reliability Analysis
,”
Proceedings of 13th International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, Kunming
, Yunnan, China, July 26–29, pp.
652
656
.10.1049/icp.2023.1709
28.
Chen
,
G.
, and
Yang
,
D.
,
2021
, “
A Unified Analysis Framework of Static and Dynamic Structural Reliabilities Based on Direct Probability Integral Method
,”
Mech. Syst. Signal Process.
,
158
, p.
107783
.10.1016/j.ymssp.2021.107783
29.
Li
,
H.
,
Chen
,
H.
,
Zhang
,
J.
,
Chen
,
G.
, and
Yang
,
D.
,
2023
, “
Direct Probability Integral Method for Reliability Sensitivity Analysis and Optimal Design of Structures
,”
Struct. Multidiscip. Optim.
,
66
(
9
), pp.
1
21
.10.1007/s00158-023-03654-1
30.
Zhang
,
J.
, and
Du
,
X.
,
2010
, “
A Second-Order Reliability Method With First-Order Efficiency
,”
ASME J. Mech. Des.
,
132
(
10
), p.
101006
.10.1115/1.4002459
31.
Maier
,
H. R.
,
Lence
,
B. J.
,
Tolson
,
B. A.
, and
Foschi
,
R. O.
,
2001
, “
First‐Order Reliability Method for Estimating Reliability, Vulnerability, and Resilience
,”
Water Resour. Res.
,
37
(
3
), pp.
779
790
.10.1029/2000WR900329
32.
Du
,
X.
, and
Chen
,
W.
,
2001
, “
A Most Probable Point-Based Method for Efficient Uncertainty Analysis
,”
J. Des. Manuf. Autom.
,
4
(
1
), pp.
47
66
.10.1080/15320370108500218
33.
Der Kiureghian
,
A.
,
Lin
,
H. Z.
, and
Hwang
,
S. J.
,
1987
, “
Second-Order Reliability Approximations
,”
J. Eng. Mech.
,
113
(
8
), pp.
1208
1225
.10.1061/(ASCE)0733-9399(1987)113:8(1208)
34.
Liu
,
J. H.
,
Fu
,
C.
, and
Meng
,
X. J.
,
2018
, “
An Efficient SORM Method Based on the Saddle-Point Approximation
,”
Mach. Des. Manuf.
,
2018
(
5
), pp.
32
34
.
35.
Yang
,
D.
,
2010
, “
Chaos Control for Numerical Instability of First Order Reliability Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
10
), pp.
3131
3141
.10.1016/j.cnsns.2009.10.018
36.
Xu
,
J.
,
Song
,
J.
,
Yu
,
Q.
, and
Kong
,
F.
,
2023
, “
Generalized Distribution Reconstruction Based on the Inversion of Characteristic Function Curve for Structural Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
229
, p.
108768
.10.1016/j.ress.2022.108768
37.
Keshtegar
,
B.
,
2017
, “
Limited Conjugate Gradient Method for Structural Reliability Analysis
,”
Eng. Comput.
,
33
(
3
), pp.
621
629
.10.1007/s00366-016-0493-7
You do not currently have access to this content.