Abstract

The use of structural mechanics models during the design process often leads to the development of models of varying fidelity. Often low-fidelity models are efficient to simulate but lack accuracy, while the high-fidelity counterparts are accurate with less efficiency. This paper presents a multifidelity surrogate modeling approach that combines the accuracy of a high-fidelity finite element model with the efficiency of a low-fidelity model to train an even faster surrogate model that parameterizes the design space of interest. The objective of these models is to predict the nonlinear frequency backbone curves of the Tribomechadynamics research challenge benchmark structure which exhibits simultaneous nonlinearities from frictional contact and geometric nonlinearity. The surrogate model consists of an ensemble of neural networks that learn the mapping between low and high-fidelity data through nonlinear transformations. Bayesian neural networks are used to assess the surrogate model's uncertainty. Once trained, the multifidelity neural network is used to perform sensitivity analysis to assess the influence of the design parameters on the predicted backbone curves. Additionally, Bayesian calibration is performed to update the input parameter distributions to correlate the model parameters to the collection of experimentally measured backbone curves.

References

1.
Giles
,
M. B.
,
2015
, “
Multilevel Monte Carlo Methods
,”
Acta Numer.
,
24
, pp.
259
328
.10.1017/S096249291500001X
2.
Peherstorfer
,
B.
,
Willcox
,
K.
, and
Gunzburger
,
M.
,
2016
, “
Optimal Model Management for Multifidelity Monte Carlo Estimation
,”
SIAM J. Sci. Comput.
,
38
(
5
), pp.
A3163
A3194
.10.1137/15M1046472
3.
Gorodetsky
,
A. A.
,
Geraci
,
G.
,
Eldred
,
M. S.
, and
Jakeman
,
J. D.
,
2020
, “
A Generalized Approximate Control Variate Framework for Multifidelity Uncertainty Quantification
,”
J. Comput. Phys.
,
408
, p.
109257
.10.1016/j.jcp.2020.109257
4.
Geraci
,
G.
,
Crussell
,
J.
,
Swiler
,
L. P.
, and
Debusschere
,
B. J.
,
2021
, “
Exploration of Multifidelity uq Sampling Strategies for Computer Network Applications
,”
Int. J. Uncertainty Quantif.
,
11
(
1
), pp.
93
118
.10.1615/Int.J.UncertaintyQuantification.2021033774
5.
Kennedy
,
M.
, and
O'Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations Are Available
,”
Biometrika
,
87
(
1
), pp.
1
13.03
.10.1093/biomet/87.1.1
6.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2017
, “
Inferring Solutions of Differential Equations Using Noisy Multi-Fidelity Data
,”
J. Comput. Phys.
,
335
, pp.
736
746
.10.1016/j.jcp.2017.01.060
7.
Perdikaris
,
P.
,
Raissi
,
M.
,
Damianou
,
A.
,
Lawrence
,
N. D.
, and
Karniadakis
,
G. E.
,
2017
, “
Nonlinear Information Fusion Algorithms for Data-Efficient Multi-Fidelity Modelling
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
473
(
2198
), p.
20160751
.10.1098/rspa.2016.0751
8.
Motamed
,
M.
,
2020
, “
A Multi-Fidelity Neural Network Surrogate Sampling Method for Uncertainty Quantification
,”
Int. J. Uncertainty Quantif.
,
10
(
4
), pp.
315
332
.10.1615/Int.J.UncertaintyQuantification.2020031957
9.
Meng
,
X.
, and
Karniadakis
,
G. E.
,
2020
, “
A Composite Neural Network That Learns From Multi-Fidelity Data: Application to Function Approximation and Inverse Pde Problems
,”
J. Comput. Phys.
,
401
, p.
109020
.10.1016/j.jcp.2019.109020
10.
Penwarden
,
M.
,
Zhe
,
S.
,
Narayan
,
A.
, and
Kirby
,
R. M.
,
2022
, “
Multifidelity Modeling for Physics-Informed Neural Networks (Pinns)
,”
J. Comput. Phys.
,
451
, p.
110844
.10.1016/j.jcp.2021.110844
11.
Gorodetsky
,
A. A.
,
Jakeman
,
J. D.
, and
Geraci
,
G.
,
2021
, “
MFNets: Data Efficient All-at-Once Learning of Multifidelity Surrogates as Directed Networks of Information Sources
,”
Comput. Mech.
,
68
(
4
), pp.
741
758
.10.1007/s00466-021-02042-0
12.
Jakeman
,
J. D.
,
Eldred
,
M. S.
,
Geraci
,
G.
,
Seidl
,
D. T.
,
Smith
,
T. M.
,
Gorodetsky
,
A. A.
,
Pham
,
T.
,
Narayan
,
A.
,
Zeng
,
X.
, and
Ghanem
,
R.
, “
Multi-Fidelity Information Fusion and Resource Allocation
,” Sandia, Albuquerque, NM, Report No. SAND2022-12793.
13.
Jakeman
,
J. D.
, “
Pyapprox: Enabling Efficient Model Analysis
,” Sandia, Albuquerque, NM, Report No. SAND2022-10458.
14.
Zeng
,
X.
,
Geraci
,
G.
,
Eldred
,
M. S.
,
Jakeman
,
J. D.
,
Gorodetsky
,
A. A.
, and
Ghanem
,
R.
,
2023
, “
Multifidelity Uncertainty Quantification With Models Based on Dissimilar Parameters
,”
Comput. Methods Appl. Mech. Eng.
,
415
, p.
116205
.10.1016/j.cma.2023.116205
15.
Tsilifis
,
P.
,
Pandita
,
P.
,
Ghosh
,
S.
, and
Wang
,
L.
,
2022
, “
Multifidelity Model Calibration in Structural Dynamics Using Stochastic Variational Inference on Manifolds
,”
Entropy
,
24
(
9
), p.
1291
.10.3390/e24091291
16.
Absi
,
G. N.
, and
Mahadevan
,
S.
,
2016
, “
Multi-Fidelity Approach to Dynamics Model Calibration
,”
Mech. Syst. Signal Process.
,
68-69
, pp.
189
206
.10.1016/j.ymssp.2015.07.019
17.
Pandey
,
P.
,
Khodaparast
,
H. H.
,
Friswell
,
M. I.
,
Chatterjee
,
T.
,
Madinei
,
H.
, and
Deighan
,
T.
,
2023
, “
A Bayesian Identification Framework for Stochastic Nonlinear Dynamic Systems Based on a New Likelihood Approximation
,”
epub
.10.21203/rs.3.rs-3335338/v1
18.
Fernández-Godino
,
M. G.
,
2023
, “
Review of Multi-fidelity Models
,”
Adv. Comp. Sci. Eng.
, 1(4), pp.
351
400
.10.3934/acse.2023015
19.
Müller
,
F.
,
2022
, “
TRC Challenge - Design Documents
,”.10.18419/darus-3147
20.
Vakakis
,
A.
,
1997
, “
Non-Linear Normal Modes (Nnms) and Their Applications in Vibration Theory: An Overview
,”
Mech. Syst. Signal Process.
,
11
(
1
), pp.
3
22
.10.1006/mssp.1996.9999
21.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
,
J.
, and
Vakakis
,
A.
,
2009
, “
Nonlinear Normal Modes, Part i: A Useful Framework for the Structural Dynamicist
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
170
194
.10.1016/j.ymssp.2008.04.002
22.
Renson
,
L.
,
Kerschen
,
G.
, and
Cochelin
,
B.
,
2016
, “
Numerical Computation of Nonlinear Normal Modes in Mechanical Engineering
,”
J. Sound Vib.
,
364
, pp.
177
206
.10.1016/j.jsv.2015.09.033
23.
Kerschen
,
G.
,
Worden
,
K.
,
Vakakis
,
A. F.
, and
Golinval
,
J.-C.
,
2006
, “
Past, Present and Future of Nonlinear System Identification in Structural Dynamics
,”
Mech. Syst. Signal Process.
,
20
(
3
), pp.
505
592
.10.1016/j.ymssp.2005.04.008
24.
Noël
,
J.
, and
Kerschen
,
G.
,
2017
, “
Nonlinear System Identification in Structural Dynamics: 10 More Years of Progress
,”
Mech. Syst. Signal Process.
,
83
, pp.
2
35
.10.1016/j.ymssp.2016.07.020
25.
Jin
,
M.
,
Brake
,
M. R.
, and
Song
,
H.
,
2019
, “
Comparison of Nonlinear System Identification Methods for Free Decay Measurements With Application to Jointed Structures
,”
J. Sound Vib.
,
453
, pp.
268
293
.10.1016/j.jsv.2019.04.021
26.
Krack
,
M.
,
Brake
,
M. R.
,
Schwingshackl
,
C.
,
Gross
,
J.
,
Hippold
,
P.
,
Lasen
,
M.
,
Dini
,
D.
, et al.,
2023
, “
The Tribomechadynamics Research Challenge: Confronting Blind Predictions for the Linear and Nonlinear Dynamics of a Novel Jointed Structure With Measurement Results
,”
epub
.10.2139/ssrn.4399383
27.
Müller
,
F.
,
Woiwode
,
L.
,
Gross
,
J.
,
Scheel
,
M.
, and
Krack
,
M.
,
2022
, “
Nonlinear Damping Quantification From Phase-Resonant Tests Under Base Excitation
,”
Mech. Syst. Signal Process.
,
177
, p.
109170
.10.1016/j.ymssp.2022.109170
28.
Bhattu
,
A.
,
Jamia
,
N.
,
Hermann
,
S.
,
Müller
,
F.
,
Özgüven
,
H. N.
, and
Schwingshackl
,
C.
,
2024
, “
The TRChallenge: Experimental Quantification of Nonlinear Modal Parameters and Confrontation With the Predictions
,” M. R. Brake, L. Renson, R. J. Kuether, and P. Tiso, eds., Nonlinear Structures & Systems, Volume 1, SEM 2023, Conference
Proceedings of the Society for Experimental Mechanics Series
, Springer, Cham.10.1007/978-3-031-36999-5_18
29.
Kuether
,
R.
,
Najera-Flores
,
D.
,
Ortiz
,
J.
,
Khan
,
M.
, and
Miles
,
P.
,
2022
, “
2021 Tribomechadynamics Research Challenge: Sandia National Laboratories High-Fidelity FEA Approach
,”
Presented at the 40th International Modal Analysis Conference (IMAC-XL)
, Austin, TX, Feb. 13–16, Paper No. 14501.
30.
Festjens
,
H.
,
Chevallier
,
G.
, and
Luc Dion
,
J.
,
2013
, “
A Numerical Tool for the Design of Assembled Structures Under Dynamic Loads
,”
Int. J. Mech. Sci.
,
75
, pp.
170
177
.10.1016/j.ijmecsci.2013.06.013
31.
Lacayo
,
R. M.
, and
Allen
,
M. S.
,
2019
, “
Updating Structural Models Containing Nonlinear Iwan Joints Using Quasi-Static Modal Analysis
,”
Mech. Syst. Signal Process.
,
118
, pp.
133
157
.10.1016/j.ymssp.2018.08.034
32.
Jewell
,
E.
,
Allen
,
M. S.
,
Zare
,
I.
, and
Wall
,
M.
,
2020
, “
Application of Quasi-Static Modal Analysis to a Finite Element Model and Experimental Correlation
,”
J. Sound Vib.
,
479
, p.
115376
.10.1016/j.jsv.2020.115376
33.
Kuether
,
R. J.
, and
Brake
,
M. R. W.
,
2016
, “
Instantaneous Frequency and Damping From Transient Ring-Down Data
,”
Dynamics of Coupled Structures
,
M.
Allen
,
R. L.
Mayes
, and
D.
Rixen
, eds., Vol.
4
,
Springer International Publishing
, Berlin, pp.
253
263
.
34.
Wall
,
M.
,
Allen
,
M. S.
, and
Kuether
,
R. J.
,
2022
, “
Observations of Modal Coupling Due to Bolted Joints in an Experimental Benchmark Structure
,”
Mech. Syst. Signal Process.
,
162
, p.
107968
.10.1016/j.ymssp.2021.107968
35.
Quadros
,
W. R.
,
2020
, “
CUBIT: Sandia's Geometry & Meshing Toolkit
,” Sandia, Albuquerque, NM, Report No. SAND2020-4156.
36.
Crane
,
N.
,
Day
,
D.
,
Dohrmann
,
C.
,
Stevens
,
B.
,
Lindsay
,
P.
,
Plews
,
J.
,
Vo
,
J.
,
Bunting
,
G.
,
Walsh
,
T.
, and
Joshi
,
S.
,
2022
, “
Sierra/SD - User's Manual - 5.10
,” Sandia, Albuquerque, NM, Report No. SAND2022-12518.
37.
Team, S. S. M
.,
2022
, “
Sierra/SM - User's Manual - 5.10
,” Sandia, Albuquerque, NM, Report No. SAND2022-12223.
38.
Crisfield
,
M. A.
,
1991
,
Non-Linear Finite Element Analysis of Solids and Structures
, Vol.
1
,
Wiley
,
Inc
., New York.
39.
Crisfield
,
M. A.
,
1997
,
Non-Linear Finite Element Analysis of Solids and Structures
, 1st ed, Vol.
2
,
Wiley
Inc
., NewYork.
40.
Zucca
,
S.
, and
Firrone
,
C. M.
,
2014
, “
Nonlinear Dynamics of Mechanical Systems With Friction Contacts: Coupled Static and Dynamic Multi-Harmonic Balance Method and Multiple Solutions
,”
J. Sound Vib.
,
333
(
3
), pp.
916
926
.10.1016/j.jsv.2013.09.032
41.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.10.1023/A:1010933404324
42.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.10.2307/1268522
43.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2015
, “
Deep Residual Learning for Image Recognition
,”2016 IEEE Conference on Computer Vision and Pattern Recognition (
CVPR
), Las Vegas, NV, June 27–30, pp.
770
778
.10.1109/CVPR.2016.90
44.
Blundell
,
C.
,
Cornebise
,
J.
,
Kavukcuoglu
,
K.
, and
Wierstra
,
D.
,
2015
, “
Weight Uncertainty in Neural Networks
,”
Proceedings of the 32 nd International Conference on Machine Learning
, Lille, France, V37.10.48550/arXiv.1505.05424
45.
Friston
,
K.
,
Mattout
,
J.
,
Trujillo-Barreto
,
N.
,
Ashburner
,
J.
, and
Penny
,
W.
,
2007
, “
Variational Free Energy and the Laplace Approximation
,”
NeuroImage
,
34
(
1
), pp.
220
234
.10.1016/j.neuroimage.2006.08.035
46.
Neal
,
R. M.
, and
Hinton
,
G. E.
,
1998
,
A View of the Em Algorithm That Justifies Incremental, Sparse, and Other Variants
,
Springer
, Dordrecht, The
Netherlands,
pp.
355
368
.10.1007/978-94-011-5014-9_12
47.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic optimization
,” CoRR, arXiv:abs/1412.6980.
48.
Homan
,
M. D.
, and
Gelman
,
A.
,
2014
, “
The No-u-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
,”
J. Mach. Learn. Res.
,
15
(
1
), pp.
1593
1623
.10.48550/arXiv.1111.4246
49.
Gelman
,
A.
,
Carlin
,
J. B.
,
Stern
,
H. S.
,
Dunson
,
D. B.
,
Vehtari
,
A.
, and
Rubin
,
D. B.
,
2013
,
Bayesian Data Analysis
,
Chapman and Hall/CRC
, Boca Raton, FL.10.1201/b16018
You do not currently have access to this content.