Abstract

The inherent randomness of fluid dynamics problems or human cognitive limitations results in non-negligible uncertainties in computational fluid dynamics (CFD) modeling and simulation, leading to doubts about the credibility of CFD results. Therefore, scientific and rigorous quantification of these uncertainties is crucial for assessing the reliability of CFD predictions and informed engineering decisions. Although mature uncertainty propagation methods have been developed for individual output quantities, the challenges lie in the multidimensional correlated flow field variables. This article proposes an advanced uncertainty propagation modeling approach based on proper orthogonal decomposition (POD) and artificial neural networks (ANN). By projecting the multidimensional correlated responses onto an orthogonal basis function space, the dimensionality of output is significantly reduced, simplifying the subsequent model training process. An artificial neural network that maps the uncertain parameters of the CFD model to the coefficients of the basis functions are established. Due to the bidirectional representation of flow field variables and basis function coefficients through proper orthogonal decomposition, combined with artificial neural network modeling, rapid prediction of flow field variables under any model parameters is achieved. To effectively identify the most influential model parameters, we employ a multi-output global sensitivity analysis method based on covariance decomposition. Through two exemplary cases of NACA0012 airfoil and M6 wing, we demonstrate the accuracy and efficacy of our proposed approach in predicting multidimensional flow field variables under varying model coefficients. Large-scale random sampling is conducted to quantify the uncertainties and identify the key factors that significantly impact the overall flow field.

References

1.
Mehta
,
U. B.
,
Eklund
,
D. R.
,
Romero
,
V. J.
,
Pearce
,
J. A.
, and
Keim
,
N. S.
,
2016
, “
Simulation Credibility, Advances in Verification, Validation, and Uncertainty Quantification
,” Report No. NASA/TP-2016-219422.
2.
Xiu
,
D.
, and
Karniadakis
,
G.
,
2002
, “
The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.10.1137/S1064827501387826
3.
Dempster
,
A. P.
,
1967
, “
Upper and Lower Probabilities Induced by a Multivalued Mapping
,”
Ann. Math. Statist.
,
38
(
2
), pp.
325
339
.10.1214/aoms/1177698950
4.
Shafer
,
G.
,
1976
,
A Mathematical Theory of Evidence
,
Princeton University Press
,
Princeton, NJ
.
5.
Tripathy
,
R.
,
Bilionis
,
I.
, and
Gonzalez
,
M.
,
2016
, “
Gaussian Processes With Built-in Dimensionality Reduction: Applications to High-Dimensional Uncertainty Propagation
,”
J. Comput. Phys.
,
321
, pp.
191
223
.10.1016/j.jcp.2016.05.039
6.
Bilionis
,
I.
, and
Zabaras
,
N.
,
2012
, “
Multi-Output Local Gaussian Process Regression: Applications to Uncertainty Quantification
,”
J. Comput. Phys.
,
231
(
17
), pp.
5718
5746
.10.1016/j.jcp.2012.04.047
7.
Park
,
J.
, and
Sandberg
,
I. W.
,
1991
, “
Universal Approximation Using Radial-Basis-Function Networks
,”
Neural Comput.
,
3
(
2
), pp.
246
257
.10.1162/neco.1991.3.2.246
8.
Tripathy
,
R. K.
, and
Bilionis
,
I.
,
2018
, “
Deep UQ: Learning Deep Neural Network Surrogate Models for High Dimensional Uncertainty Quantification
,”
J. Comput. Phys.
,
375
, pp.
565
588
.10.1016/j.jcp.2018.08.036
9.
Conti
,
S.
, and
O'Hagan
,
A.
,
2010
, “
Bayesian Emulation of Complex Multi-Output and Dynamic Computer Models
,”
J. Stat. Plann. Inference
,
140
(
3
), pp.
640
651
.10.1016/j.jspi.2009.08.006
10.
Oakley
,
J. E.
, and
O'Hagan
,
A.
,
2004
, “
Probabilistic Sensitivity Analysis of Complex Models: A Bayesian Approach
,”
J. R. Stat. Soc.: Ser. B: Stat. Methodol.
,
66
(
3
), pp.
751
769
.10.1111/j.1467-9868.2004.05304.x
11.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
435
.10.1214/ss/1177012413
12.
Williams
,
C. K. I.
, and
Rasmussen
,
C. E.
,
2006
, “
Gaussian Processes for Machine Learning
,”
Advances in Neural Information Processing Systems
, Vol.
18
,
Y.
Weiss
,
B.
Schölkopf
, and
J. C.
Platt
, eds.,
MIT Press
,
Cambridge, MA
, pp.
519
526
.
13.
Pacheco
,
J. E.
,
Amon
,
C. H.
, and
Finger
,
S.
,
2001
, “
Developing Bayesian Surrogates for Use in Preliminary Design
,”
ASME
Paper No. DETC2001/DTM-21701. 10.1115/DETC2001/DTM-21701
14.
Romero
,
D. A.
,
Amon
,
C.
, and
Finger
,
S.
,
2003
, “
Modeling Time-Dependent Systems Using Multi-Stage Bayesian Surrogates
,”
ASME
Paper No. IMECE2003-55049. 10.1115/IMECE2003-55049
15.
Lumley
,
J. L.
,
1967
, “The Structure of Inhomogeneous Turbulent Flows,” Proceedings of the International Colloquium on the Fine Scale Structure of the Atmosphere and Its Influence on Radio Wave Propagation, Doklady Akademii Nauk SSSR, Moscow, Russia.
16.
Cipolla
,
K. M.
,
Liakopoulos
,
A.
, and
Rockwell
,
D. O.
,
1998
, “
Quantitative Imaging in Proper Orthogonal Decomposition of Flow Past a Delta Wing
,”
AIAA J.
,
36
(
7
), pp.
1247
1255
.10.2514/2.506
17.
Shenghua
,
D.
,
Aiming
,
S.
, and
Zhengyin
,
Y.
,
2015
, “
CFD Computation and POD Analysis for Transonic Buffet on a Supercritical Airfoil
,”
Acta Aerodyn. Sin.
,
33
(
4
), pp.
476
483
.10.7638/kqdlxxb-2013.0100
18.
Sirovich
,
L.
, and
Kirby
,
M.
,
1987
, “
Low-Dimensional Procedure for the Characterization of Human Faces
,”
J. Opt. Soc. Am. A
,
4
(
3
), pp.
519
524
.10.1364/JOSAA.4.000519
19.
Chan
,
S.
, and
Elsheikh
,
A. H.
,
2018
, “
A Machine Learning Approach for Efficient Uncertainty Quantification Using Multiscale Methods
,”
J. Comput. Phys.
,
354
, pp.
493
511
.10.1016/j.jcp.2017.10.034
20.
Kohonen
,
T.
,
1988
, “
An Introduction to Neural Computing
,”
Neural Networks
,
1
(
1
), pp.
3
16
.10.1016/0893-6080(88)90020-2
21.
Gamboa
,
F.
,
Janon
,
A.
,
Klein
,
T.
, and
Lagnoux
,
A.
,
2014
, “
Sensitivity Analysis for Multi-Dimensional and Functional Outputs
,”
Electron. J. Stat.
,
8
(
1
), pp.
575
603
.10.1214/14-EJS895
22.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA J.
,
30
(
1
), pp.
5
12
.10.2514/6.1992-439
23.
Schaefer
,
J.
,
Cary
,
A.
,
Mani
,
M.
, and
Spalart
,
P.
,
2017
, “
Uncertainty Quantification and Sensitivity Analysis of SA Turbulence Model Coefficients in Two and Three Dimensions
,”
AIAA
Paper No. 2017-1710. 10.2514/6.2017-1710
24.
Stephanopoulos
,
K.
,
Witte
,
I.
,
Wray
,
T. J.
, and
Agarwal
,
R. K.
,
2016
, “
Uncertainty Quantification of Turbulence Model Coefficients in OpenFOAM and Fluent for Mildly Separated Flows
,”
AIAA
Paper No. 2016-4401. 10.2514/6.2016-4401
25.
Chen
,
J. Q.
,
Wu
,
X. J.
,
Zhang
,
J.
,
Li
,
B.
,
Jia
,
H. Y.
, and
Zhou
,
N. C.
,
2021
, “
Flowstar: General Unstructured-Grid CFD Software for National Numerical Wind Tunnel (NNW) Project
,”
Acta Aeronaut. Astronaut. Sin.
,
42
(
9
), p.
625739
.10.7527/S1000-6893.2021.25739
26.
Diskin
,
B.
, and
Thomas
,
J. L.
,
2011
, “
Comparison of Node-Centered and Cell-Centered Unstructured Finite Volume Discretizations: Inviscid Fluxes
,”
AIAA J.
,
49
(
4
), pp.
836
854
.10.2514/1.J050897
27.
Venkatakrishnan
,
V.
,
1993
, “
On the Accuracy of Limiters and Convergence to Steady-State Solutions
,”
AIAA
Paper No. 1993-0880. 10.2514/6.1993-0880
You do not currently have access to this content.