Abstract

The United States Navy (USN) intends to increase the amount of uncrewed aircraft in a carrier air wing. To support this increase, carrier-based uncrewed aircraft will be required to have some level of autonomy as there will be situations where a human cannot be in/on the loop. However, there is no existing and approved method to certify autonomy within Naval Aviation. In support of generating certification evidence for autonomy, the United States Naval Academy (USNA) has created a training and evaluation system (TES) to provide quantifiable metrics for feedback performance in autonomous systems. The preliminary use case for this work focuses on autonomous aerial refueling. Prior demonstrations of autonomous aerial refueling have leveraged a deep neural network (DNN) for processing visual feedback to approximate the relative position of an aerial refueling drogue. The training and evaluation system proposed in this work simulates the relative motion between the aerial refueling drogue and feedback camera system using industrial robotics. Ground-truth measurements of the pose between the camera and drogue are measured using a commercial motion capture system. Preliminary results demonstrate calibration methods providing ground-truth measurements with millimeter precision. Leveraging this calibration, the proposed system is capable of providing large-scale datasets for DNN training and evaluation against a precise ground truth.

References

1.
Tucker
,
P.
,
2021
, “
Drones Could One Day Make Up 40 Percent of a Carrier Air Wing, Navy Says
,” accessed Dec. 27, 2023, https://www.defenseone.com/technology/2021/03/drones-could-one-day-make-40-carrier-air-wing-navy-says/172799/
2.
Shelbourne
,
M.
,
2021
, “
MQ-25A Unmanned Prototype Now on Carrier George H.W. Bush for at-Sea Testing
,” accessed Dec. 27, 2023, https://news.usni.org/2021/12/02/mq-25a-unmanned-prototype-now-on-carrier-george-h-w-bush-for-at-sea-testing
3.
Costello
,
D.
, and
Xu
,
H.
,
2023
, “
Using a Run Time Assurance Approach for Certifying Autonomy Within Naval Aviation
,”
Syst. Eng.
,
26
(
3
), pp.
271
278
.10.1002/sys.21654
4.
Schweikhard
,
K.
,
2006
, “
Results of NASA/DARPA Automatic Probe and Drogue Refueling Flight Test
,”
SAE Guidance and Control Subcommittee Meeting
, SAE,
Williamsburg, VA
.
5.
NORTHROP GRUMMAN,
2015
, “
X-47B Unmanned Aircraft Demonstrates the First Autonomous Aerial Refueling
,” accessed Dec.27, https://www.northropgrumman.com/what-we-do/air/x-47b-ucas
6.
Zhang
,
S.
,
Jafari
,
O.
, and
Nagarkar
,
P.
,
2021
, “
A Survey on Machine Learning Techniques for Auto Labeling of Video, Audio, and Text Data
,”
arXiv:2109.03784.
10.48550/arxiv.2109.03784
7.
Ross
,
B.
,
Mauldin
,
C.
,
Parry
,
J.
, and
Costello
,
D.
,
2022
, “
First Steps Toward Certifying an UAS to Receive Fuel Airborne
,”
Proceedings of International Conference on Unmanned Aircraft Systems
,
IEEE
,
Dubrovnik, Croatia
, June
21
24
.10.1109/ICUAS54217.2022.9836174
8.
Nabavinejad
,
S. M.
,
Reda
,
S.
, and
Ebrahimi
,
M.
,
2022
, “
Coordinated Batching and DVFS for DNN Inference on GPU Accelerators
,”
IEEE Trans. Parallel Distrib. Syst.
,
33
(
10
), pp.
2496
2508
.10.1109/TPDS.2022.3144614
9.
Onim
,
M. S. H.
,
Nyeem
,
H.
,
Roy
,
K.
,
Hasan
,
M.
,
Ishmam
,
A.
,
Akif
,
M. A. H.
, and
Ovi
,
T. B.
,
2022
, “
BLPnet: A New DNN Model and Bengali OCR Engine for Automatic Licence Plate Recognition
,”
Array (New York)
,
15
, p.
100244
.10.1016/j.array.2022.100244
10.
Deng
,
X.
,
Qin
,
W.
,
Zhang
,
R.
, and
Qi
,
Y.
,
2019
, “
Automatic Segmentation Algorithm of License Plate Image Based on PCNN and DNN
,”
2019 International Conference on Image and Video Processing, and Artificial Intelligence
,
SPIE
, Taipie, Taiwan, Sept. 22-29, p.
1132102
.10.1117/12.2537280
11.
Fuertes
,
D.
,
del Blanco
,
C. R.
,
Carballeira
,
P.
,
Jaureguizar
,
F.
, and
García
,
N.
,
2022
, “
People Detection With Omnidirectional Cameras Using a Spatial Grid of Deep Learning Foveatic Classifiers
,”
Digital Signal Processing
,
126
, p.
103473
.10.1016/j.dsp.2022.103473
12.
Kim
,
M.
, and
Lee
,
I.
,
2022
, “
Human-Guided Auto-Labeling for Network Traffic Data: The GELM Approach
,”
Neural Networks
,
152
, pp.
510
526
.10.1016/j.neunet.2022.05.007
13.
Elezi
,
I.
,
Yu
,
Z.
,
Anandkumar
,
A.
,
Leal-Taixe
,
L.
, and
Alvarez
,
J. M.
,
2021
, “
Not All Labels Are Equal: Rationalizing the Labeling Costs for Training Object Detection
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
, June 19–25, pp.
14492
14501
.
14.
Ganeshan
,
A.
,
Vallet
,
A.
,
Kudo
,
Y.
,
Maeda
,
S.-I.
,
Kerola
,
T.
,
Ambrus
,
R.
,
Park
,
D.
, and
Gaidon
,
A.
,
2021
, “
Warp-Refine Propagation: Semi-Supervised Auto-Labeling Via Cycle-Consistency
,”
2021 IEEE/CVF International Conference on Computer Vision (ICCV)
,
IEEE
, Oct. 10–17, pp.
15479
15489
.
15.
Elezi
,
I.
,
Yu
,
Z.
,
Anandkumar
,
A.
,
Leal-Taixe
,
L.
, and
Alverez
,
J.
,
2021
, “
Towards Reducing Labeling Cost in Deep Object Detection
,” accessed Dec. 27, https://authors.library.caltech.edu/110652/1/2106.11921.pdf
16.
Alsammed
,
S. M. Z. A.
,
2021
, “
Implementation of Lung Cancer Diagnosis Based on DNN in Healthcare System
,”
Webology
,
18
(
Special Issue 04
), pp.
798
812
.10.14704/WEB/V18SI04/WEB18166
17.
Surendar
,
P.
,
2021
, “
Diagnosis of Lung Cancer Using Hybrid Deep Neural Network With Adaptive Sine Cosine Crow Search Algorithm
,”
J. Comput. Sci.
,
53
, p.
101374
.10.1016/j.jocs.2021.101374
18.
Tan
,
H.
,
Bates
,
J. H. T.
, and
Matthew Kinsey
,
C.
,
2022
, “
Discriminating TB Lung Nodules From Early Lung Cancers Using Deep Learning
,”
BMC Med. Inf. Decis. Making
,
22
(
1
), pp.
1
161
.10.1186/s12911-022-01904-8
19.
Arumuga Maria Devi
,
T.
, and
Mebin Jose
,
V. I.
,
2021
, “
Three Stream Network Model for Lung Cancer Classification in the CT Images
,”
Open Comput. Sci.
,
11
(
1
), pp.
251
261
.10.1515/comp-2020-0145
20.
Song
,
Q.
,
Zhao
,
L.
,
Luo
,
X.
, and
Dou
,
X.
,
2017
, “
Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images
,”
J. Healthcare Eng.
,
2017
, pp.
1
7
.10.1155/2017/8314740
21.
Kim
,
B.
, and
Lee
,
J.
,
2021
, “
A Bayesian Network-Based Information Fusion Combined With DNNs for Robust Video Fire Detection
,”
Appl. Sci.
,
11
(
16
), p.
7624
.10.3390/app11167624
22.
Park
,
M.
, and
Ko
,
B. C.
,
2020
, “
Two-Step Real-Time Night-Time Fire Detection in an Urban Environment Using Static ELASTIC-YOLOv3 and Temporal Fire-Tube
,”
Sensors (Basel, Switzerland)
,
20
(
8
), p.
2202
.10.3390/s20082202
23.
Khan
,
A.
,
Hassan
,
B.
,
Khan
,
S.
,
Ahmed
,
R.
, and
Abuassba
,
A.
,
2022
, “
DeepFire: A Novel Dataset and Deep Transfer Learning Benchmark for Forest Fire Detection
,”
Mobile Inf. Syst.
,
2022
, pp.
1
14
.10.1155/2022/5358359
24.
Kocić
,
J.
,
Jovičić
,
N.
, and
Drndarević
,
V.
,
2019
, “
An End-to-End Deep Neural Network for Autonomous Driving Designed for Embedded Automotive Platforms
,”
Sensors (Basel, Switzerland)
,
19
(
9
), p.
2064
.10.3390/s19092064
25.
Gupta
,
A.
,
Anpalagan
,
A.
,
Guan
,
L.
, and
Khwaja
,
A. S.
,
2021
, “
Deep Learning for Object Detection and Scene Perception in Self-Driving Cars: Survey, Challenges, and Open Issues
,”
Array (New York)
,
10
, p.
100057
.10.1016/j.array.2021.100057
26.
Tian
,
Y.
,
Pei
,
K.
,
Jana
,
S.
, and
Ray
,
B.
,
2018
, “
DeepTest: Automated Testing of Deep-Neural-Network-Driven Autonomous Cars
,”
2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE '18), ACM
, Gothenburg, Sweden, May 27–June 3, pp.
303
314
.10.1145/3180155.3180220
27.
Lee
,
A.
,
Dallmann
,
W.
,
Nykl
,
S.
,
Taylor
,
C.
, and
Borghetti
,
B.
,
2020
, “
Long-Range Pose Estimation for Aerial Refueling Approaches Using Deep Neural Networks
,”
J. Aerosp. Inf. Syst.
,
17
(
11
), pp.
634
646
.10.2514/1.I010842
28.
Johnson
,
D. T.
,
Nykl
,
S. L.
, and
Raquet
,
J. F.
,
2017
, “
Combining Stereo Vision and Inertial Navigation for Automated Aerial Refueling
,”
J. Guid., Control, Dyn.
,
40
(
9
), pp.
2250
2259
.10.2514/1.G002648
29.
Paulson
,
Z.
,
Nykl
,
S.
,
Pecarina
,
J.
, and
Woolley
,
B.
,
2019
, “
Mitigating the Effects of Boom Occlusion on Automated Aerial Refueling Through Shadow Volumes
,”
J. Def. Model. Simul.
,
16
(
2
), pp.
175
189
.10.1177/1548512918808408
30.
Piekenbrock
,
M.
,
Robinson
,
J.
,
Burchett
,
L.
,
Nykl
,
S.
,
Woolley
,
B.
, and
Terzuoli
,
A.
,
2016
, “
Automated Aerial Refueling: Parallelized 3D Iterative Closest Point: Subject Area: Guidance and Control
,” 2016 IEEE National Aerospace and Electronics Conference (NAECON) and Ohio Innovation Summit (
OIS
),
IEEE
, Dayton, OH, July 26–29, pp.
188
192
.10.1109/NAECON.2016.7856797
31.
Parsons
,
C.
,
Paulson
,
Z.
,
Nykl
,
S.
,
Dallman
,
W.
,
Woolley
,
B. G.
, and
Pecarina
,
J.
,
2019
, “
Analysis of Simulated Imagery for Real-Time Vision-Based Automated Aerial Refueling
,”
J. Aerosp. Inf. Syst.
,
16
(
3
), pp.
77
93
.10.2514/1.I010658
32.
Valasek
,
J.
,
Gunnam
,
K.
,
Kimmett
,
J.
,
Junkins
,
J. L.
,
Hughes
,
D.
, and
Tandale
,
M. D.
,
2005
, “
Vision-Based Sensor and Navigation System for Autonomous Air Refueling
,”
J. Guid., Control, Dyn.
,
28
(
5
), pp.
979
989
.10.2514/1.11934
33.
Tandale
,
M. D.
,
Bowers
,
R.
, and
Valasek
,
J.
,
2006
, “
Trajectory Tracking Controller for Vision-Based Probe and Drogue Autonomous Aerial Refueling
,”
J. Guid., Control, Dyn.
,
29
(
4
), pp.
846
857
.10.2514/1.19694
34.
Ren
,
J.
,
Dai
,
X.
,
Quan
,
Q.
,
Zi-Bo
,
W.
, and
Kai-Yuan
,
C.
,
2019
, “
Reliable Docking Control Scheme for Probe-Drogue Refueling
,”
J. Guid., Control, Dyn.
,
42
(
11
), pp.
2511
2520
.10.2514/1.G003708
35.
Valasek
,
J.
,
Famularo
,
D.
, and
Marwaha
,
M.
,
2017
, “
Fault-Tolerant Adaptive Model Inversion Control for Vision-Based Autonomous Air Refueling
,”
J. Guid., Control, Dyn.
,
40
(
6
), pp.
1336
1347
.10.2514/1.G001888
36.
Wang
,
X.
,
Kong
,
X.
,
Zhi
,
J.
,
Chen
,
Y.
, and
Dong
,
X.
,
2015
, “
Real-Time Drogue Recognition and 3D Locating for UAV Autonomous Aerial Refueling Based on Monocular Machine Vision
,”
Chin. J. Aeronaut.
,
28
(
6
), pp.
1667
1675
.10.1016/j.cja.2015.10.006
37.
Costello
,
D.
, and
Adams
,
R.
,
2023
, “
A Framework for Airworthiness Certification of Autonomous Systems Within United States Naval Aviation
,”
J. Aviat.
,
7
(
1
), pp.
7
16
.10.30518/jav.1161725
38.
Parry
,
J.
,
Costello
,
D.
,
Rupert
,
J.
, and
Taylor
,
G.
,
2023
, “
The National Airworthiness Council Artificial Intelligence Working Group (NACAIWG) Summit Proceedings 2022
,”
Syst. Eng.
,
26
(
6
), pp.
925
930
.10.1002/sys.21703
39.
Costello
,
D.
, and
Xu
,
H.
,
2022
, “
Run Time Assurance Approach to Certifying Autonomy Within Naval Aviation: Possible Method to Certify w/o a Human in or on the Loop
,” XPotential 2022,
Orlando, FL
, Apr.
22
25
.
40.
ATP-3.3.4.2.(D), U.S. STANDARDS RELATED DOCUMENT (SRD)
,
2022
, “
NATO Joint Airpower Competence Centre
,” accessed July 20, 2023, https://coi.japcc.org/app/uploads/US-National-SRD.pdf
41.
Edwards
,
S.
,
2022
, “
Motoman
,” accessed July 20, 2023, http://wiki.ros.org/motoman
42.
Anderson
,
T.
, and
Rasmussen
,
S.
,
2022
, “
ur_Modern_Driver
,” accessed July 20, 2023, http://wiki.ros.org/ur_modern_driver
43.
Bovbel
,
P.
,
2022
, “
Vrpn_Client_Ros
,” accessed July 20, 2023, http://wiki.ros.org/vrpn_client_ros
44.
Helmich
,
H.
,
2022
, “
RosYaskawaToolbox
,” accessed July 20, 2023, https://github.com/hfhelmich/RosYaskawaToolbox
45.
Helmich
,
H.
,
2022
, “
RosURToolbox
,” accessed July 20, 2023, https://github.com/hfhelmich/RosURToolbox
46.
Helmich
,
H.
,
2022
, “
RosVRPNToolbox
,” accessed July 20, 2023, https://github.com/hfhelmich/RosVRPNToolbox
47.
Park
,
F.
, and
Martin
,
B.
,
1994
, “
Robot Sensor Calibration: Solving AX=XB on the Euclidean Group
,”
IEEE Trans. Rob. Autom.
,
10
(
5
), pp.
717
721
.10.1109/70.326576
48.
Kutzer
,
M.
,
2022
, “
Transformation Toolbox for MATLAB
,” accessed July 20, 2023, https://github.com/kutzer/TransformationToolbox
49.
Kutzer
,
M.
,
2022
, “
Patch Toolbox for MATLAB
,” accessed July 20, 2023, https://github.com/kutzer/PatchToolbox
50.
Kutzer
,
M.
,
2022
, “
Geometry Toolbox for MATLAB
,” accessed July 20, 2023, https://github.com/kutzer/GeometryToolbox
51.
Kutzer
,
M.
,
2022
, “
Plotting Toolbox for MATLAB
,” accessed July 20, 2023, https://github.com/kutzer/PlottingToolbox
52.
Kimmel
,
A.
,
Shome
,
R.
,
Littlefield
,
Z.
, and
Bekris
,
K.
,
2019
, “
Fast, Anytime Motion Planning for Prehensile Manipulation in Clutter
,”
arXiv:1806.07465.
10.48550/arXiv.1806.07465
You do not currently have access to this content.