Abstract

Solution verification is crucial for establishing the reliability of simulations. A central challenge is to estimate the discretization error accurately and reliably. Many approaches to this estimation are based on the observed order of accuracy; however, it may fail when the numerical solutions lie outside the asymptotic range. Here we propose a grid refinement method that adopts constant orders given by the user, called the prescribed orders expansion method (POEM). Through an iterative procedure, the user is guaranteed to obtain the dominant orders of the discretization error. The user can also compare the corresponding terms to quantify the degree of asymptotic convergence of the numerical solutions. These features ensure that the estimation of the discretization error is accurate and reliable. Moreover, the implementation of POEM is the same for any dimensions and refinement paths. We demonstrate these capabilities using some advection and diffusion problems and standard refinement paths. The computational cost of using POEM is lower if the refinement ratio is larger; however, the number of shared grid points where POEM applies also decreases, causing greater uncertainty in the global estimates of the discretization error. We find that the proportion of shared grid points is maximized when the refinement ratios are in a certain form of fractions. Furthermore, we develop the method of interpolating differences between approximate solutions (MIDAS) for creating shared grid points in the domain. These approaches allow users of POEM to obtain a global estimate of the discretization error of lower uncertainty at a reduced computational cost.

References

1.
Roache
,
P. J.
,
1998
,
Verification and Validation in Computational Science and Engineering
,
Hermosa Publishers
, Socorro, NM.
2.
Stern
,
F.
,
Wilson
,
R. V.
,
Coleman
,
H. W.
, and
Paterson
,
E. G.
,
2001
, “
Comprehensive Approach to Verification and Validation of CFD Simulations-Part 1: Methodology and Procedures
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
793
802
.10.1115/1.1412235
3.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
, Cambridge, UK.
4.
Roache
,
P. J.
,
1998
, “
Verification of Codes and Calculations
,”
AIAA J.
,
36
(
5
), pp.
696
702
.10.2514/2.457
5.
Roy
,
C. J.
,
2005
, “
Review of Code and Solution Verification Procedures for Computational Simulation
,”
J. Comput. Phys.
,
205
(
1
), pp.
131
156
.10.1016/j.jcp.2004.10.036
6.
Eça
,
L.
, and
Hoekstra
,
M.
,
2014
, “
A Procedure for the Estimation of the Numerical Uncertainty of CFD Calculations Based on Grid Refinement Studies
,”
J. Comput. Phys.
,
262
, pp.
104
130
.10.1016/j.jcp.2014.01.006
7.
Roy
,
C.
,
2010
, “
Review of Discretization Error Estimators in Scientific Computing
,”
AIAA
Paper No. 2010–126.10.2514/6.2010-126
8.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
)9, pp.
405
413
.10.1115/1.2910291
9.
Phillips
,
T. S.
, and
Roy
,
C. J.
,
2016
, “
A New Extrapolation-Based Uncertainty Estimator for Computational Fluid Dynamics
,”
ASME J. Verif. Valid. Uncertainty Quantif.
,
1
(
4
), p.
041006
.10.1115/1.4035666
10.
Rider
,
W.
,
Witkowski
,
W.
,
Kamm
,
J. R.
, and
Wildey
,
T.
,
2016
, “
Robust Verification Analysis
,”
J. Comput. Phys.
,
307
(
2
), pp.
146
163
.10.1016/j.jcp.2015.11.054
11.
Salas
,
M. D.
,
2006
, “
Some Observations on Grid Convergence
,”
Comput. Fluids
,
35
(
7
), pp.
688
692
.10.1016/j.compfluid.2006.01.003
12.
Xing
,
T.
, and
Stern
,
F.
,
2010
, “
Factors of Safety for Richardson Extrapolation
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061403
.10.1115/1.4001771
13.
Eça
,
L.
,
Vaz
,
G.
, and
Hoekstra
,
M.
,
2018
, “
A Contribution for the Assessment of Discretization Error Estimators Based on Grid Refinement Studies
,”
ASME J. Verif. Valid. Uncertainty Quantif.
,
3
(
2
), p.
021001
.10.1115/1.4040803
14.
Orozco
,
C.
,
K Iz Ildağ
,
D.
,
Oliva
,
A.
, and
Pérez-Segarra
,
C. D.
,
2010
, “
Verification of Multidimensional and Transient CFD Solutions
,”
Numer. Heat Transfer B Fund.
,
57
(
1
)3, pp.
46
73
.10.1080/10407791003613702
15.
Roy
,
C. J.
,
2003
, “
Grid Convergence Error Analysis for Mixed-Order Numerical Schemes
,”
AIAA J.
,
41
(
4
), pp.
595
604
.10.2514/2.2013
16.
Eça
,
L.
, and
Hoekstra
,
M.
,
2009
, “
Evaluation of Numerical Error Estimation Based on Grid Refinement Studies With the Method of the Manufactured Solutions
,”
Comput. Fluids
,
38
(
8
), pp.
1580
1591
.10.1016/j.compfluid.2009.01.003
17.
Hodis
,
S.
,
Uthamaraj
,
S.
,
Smith
,
A. L.
,
Dennis
,
K. D.
,
Kallmes
,
D. F.
, and
Dragomir-Daescu
,
D.
,
2012
, “
Grid Convergence Errors in Hemodynamic Solution of Patient-Specific Cerebral Aneurysms
,”
J. Biomech.
,
45
(
16
), pp.
2907
2913
.10.1016/j.jbiomech.2012.07.030
18.
Phillips
,
T. S.
, and
Roy
,
C. J.
,
2014
, “
Richardson Extrapolation-Based Discretization Uncertainty Estimation for Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
136
(
12
), p.
121401
.10.1115/1.4027353
19.
Trivedi
,
C.
, and
Dahlhaug
,
O. G.
,
2019
, “
A Comprehensive Review of Verification and Validation Techniques Applied to Hydraulic Turbines
,”
Int. J. Fluid Mach. Syst.
,
12
(
4
), pp.
345
367
.10.5293/IJFMS.2019.12.4.345
20.
Eça
,
L.
, and
Hoekstra
,
M.
,
2002
, “
An Evaluation of Verification Procedure for CFD Applications
,”
24th Symposium on Naval Hydrodynamics
, Fukuoka, Japan, pp.
568
587
.
21.
Knupp
,
P.
, and
Salari
,
K.
,
2002
,
Verification of Computer Codes in Computational Science and Engineering
,
Chapman and Hall/CRC
, London, UK.
22.
Roache, P. J.
,
2002
, “
Code Verification by the Method of Manufactured Solutions
,”
ASME J. Fluids Eng.
, 124(1), pp.
4
10
.10.1115/1.1436090
23.
Love
,
E.
, and
Rider
,
W.
,
2013
, “
On the Convergence of Finite Difference Methods for PDE Under Temporal Refinement
,”
Comput. Math. Appl.
,
66
(
1
), pp.
33
40
.10.1016/j.camwa.2013.04.019
24.
Courant
,
R.
,
Friedrichs
,
K.
, and
Lewy
,
H.
,
1928
, “
Über Die Partiellen Differenzengleichungen Der Mathematischen Physik
,”
Math. Ann.
,
100
(
1
), pp.
32
74
.10.1007/BF01448839
25.
Tattersall
,
J. J.
,
2005
,
Elementary Number Theory in Nine Chapters
, 2nd ed.,
Cambridge University Press
, Cambridge, UK, pp.
55
86
.
26.
Roache
,
P. J.
, and
Knupp
,
P. M.
,
1993
, “
Completed Richardson Extrapolation
,”
Commun. Numer. Methods Eng.
,
9
(
5
), pp.
365
374
.10.1002/cnm.1640090502
27.
Richards
,
S. A.
,
1997
, “
Completed Richardson Extrapolation in Space and Time
,”
Commun. Numer. Methods Eng.
,
13
(
7
), pp.
573
582
.10.1002/(SICI)1099-0887(199707)13:7<573::AID-CNM84>3.0.CO;2-6
You do not currently have access to this content.