Abstract

Deep learning methods have state-of-the-art performances in many image restoration tasks. Their effectiveness is mostly related to the size of the dataset used for the training. Deep image prior (DIP) is an energy-function framework which eliminates the dependency on the training set, by considering the structure of a neural network as an handcrafted prior offering high impedance to noise and low impedance to signal. In this paper, we analyze and compare the use of different optimization schemes inside the DIP framework for the denoising task.

References

1.
Scherzer
,
O.
,
Grasmair
,
M.
,
Grossauer
,
H.
,
Haltmeier
,
M.
, and
Lenzen
,
F.
,
2009
,
Variational Methods in Imaging
,
Springer
,
New York
.
2.
Arridge
,
S.
,
Maass
,
P.
,
Öktem
,
O.
, and
Schönlieb
,
C.-B.
,
2019
, “
Solving Inverse Problems Using Data-Driven Models
,”
Acta Numerica
,
28
, pp.
1
174
.10.1017/S0962492919000059
3.
Jin
,
K. H.
,
McCann
,
M. T.
,
Froustey
,
E.
, and
Unser
,
M.
,
2017
, “
Deep Convolutional Neural Network for Inverse Problems in Imaging
,”
IEEE Trans. Image Process.
,
26
(
9
), pp.
4509
4522
.10.1109/TIP.2017.2713099
4.
Ulyanov
,
D.
,
Vedaldi
,
A.
, and
Lempitsky
,
V.
,
2018
, “
Deep Image Prior
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
, June 18–23, pp.
9446
9454
.
5.
Heckel
,
R.
, and
Hand
,
P.
,
2019
, “
Deep Decoder: Concise Image Representations From Untrained Non-Convolutional Networks
,” International Conference on Learning Representations.
6.
Dittmer
,
S.
,
Kluth
,
T.
,
Maass
,
P.
, and
Baguer
,
D. O.
,
2020
, “
Regularization by Architecture: A Deep Prior Approach for Inverse Problems
,”
J. Math. Imaging Vision
,
62
(
3
), pp.
456
470
.10.1007/s10851-019-00923-x
7.
Cheng
,
Z.
,
Gadelha
,
M.
,
Maji
,
S.
, and
Sheldon
,
D.
,
2019
, “
A Bayesian Perspective on the Deep Image Prior
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
, June 15–20, pp.
5443
5451
.https://openaccess.thecvf.com/content_CVPR_2019/papers/Cheng_A_Bayesian_Perspective_on_the_Deep_Image_Prior_CVPR_2019_paper.pdf
8.
Sagel
,
A.
,
Roumy
,
A.
, and
Guillemot
,
C.
,
2020
, “
Sub-Dip: Optimization on a Subspace With Deep Image Prior Regularization and Application to Superresolution
,”
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(
ICASSP
),
Barcelona, Spain
, May 4–8, pp.
2513
2517
.10.1109/ICASSP40776.2020.9054270
9.
Mataev
,
G.
,
Milanfar
,
P.
, and
Elad
,
M.
,
2019
, “
DeepRED: Deep Image Prior Powered by RED
,” Proceedings of the IEEE/CVF International Conference on Computer Vision (
ICCV
) Workshops.https://openaccess.thecvf.com/content_ICCVW_2019/papers/LCI/Mataev_DeepRED_Deep_Image_Prior_Powered_by_RED_ICCVW_2019_paper.pdf
10.
Liu
,
J.
,
Sun
,
Y.
,
Xu
,
X.
, and
Kamilov
,
U. S.
,
2019
, “
Image Restoration Using Total Variation Regularized Deep Image Prior
,”
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(
ICASSP
),
Brighton, UK
,
May 12–17
, pp.
7715
7719
.10.1109/ICASSP.2019.8682856
11.
Cascarano
,
P.
,
Sebastiani
,
A.
,
Comes
,
M. C.
,
Franchini
,
G.
, and
Porta
,
F.
,
2021
, “
Combining Weighted Total Variation and Deep Image Prior for Natural and Medical Image Restoration via ADMM
,”
2021 21st International Conference on Computational Science and Its Applications (ICCSA)
,
Cagliari, Italy
, Sept. 13–16, pp.
39
46
.10.1109/ICCSA54496.2021.00016
12.
Cascarano
,
P.
,
Comes
,
M. C.
,
Mencattini
,
A.
,
Parrini
,
M. C.
,
Piccolomini
,
E. L.
, and
Martinelli
,
E.
,
2021
, “
Recursive Deep Prior Video: A Super Resolution Algorithm for Time-Lapse Microscopy of Organ-on-Chip Experiments
,”
Med. Image Anal.
,
72
, p.
102124
.10.1016/j.media.2021.102124
13.
Kingma
,
D.
, and
Ba
,
J.
,
2017
, “
Adam: A Method for Stochastic Optimization
,” e-print arXiv:1412.6980.
14.
Bertsekas
,
D. P.
, “
Nonlinear Programming
,”
J. Operational Res. Soc., 48(3), pp.
334
334
.
15.
Robbins
,
H.
, and
Monro
,
S.
,
1951
, “
A Stochastic Approximation Method
,”
Ann. Math. Stat.
,
22
(
3
), pp.
400
407
.10.1214/aoms/1177729586
16.
Bottou
,
L.
,
Curtis
,
F.
, and
Nocedal
,
J.
,
2018
, “
Optimization Methods for Large-Scale Machine Learning
,”
SIAM Rev.
,
60
(
2
), pp.
223
311
.10.1137/16M1080173
17.
Loizou
,
N.
, and
Richtarik
,
P.
,
2018
, “
Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods
,”
Comput. Optimization Appl
., 77(3), pp.
653
710
.10.1007/s10589-020-00220-z
18.
Chakrabarty
,
P.
, and
Maji
,
S.
,
2019
, “
The Spectral Bias of the Deep Image Prior
,” e-print arXiv:1912.08905.
You do not currently have access to this content.