Abstract

Quantifying the fractional change in a predicted quantity of interest with successive mesh refinement is an attractive and widely used but limited approach to assessing numerical error and uncertainty in physics-based computational modeling. Herein, we introduce the concept of a scalar multiplier αGCI to clarify the connection between fractional change and a more rigorous and accepted estimate of numerical uncertainty, the grid convergence index (GCI). Specifically, we generate lookup tables for αGCI as a function of observed order of accuracy and mesh refinement factor. We then illustrate the limitations of relying on fractional change alone as an acceptance criterion for mesh refinement using a case study involving the radial compression of a Nitinol stent. Results illustrate that numerical uncertainty is often many times larger than the observed fractional change in a mesh pair, especially in the presence of small mesh refinement factors or low orders of accuracy. We strongly caution against relying on fractional change alone as an acceptance criterion for mesh refinement studies, particularly in any high-risk applications requiring absolute prediction of quantities of interest. When computational resources make the systematic refinement required for calculating GCI impractical, submodeling approaches as demonstrated herein can be used to rigorously quantify discretization error at a comparatively minimal computational cost. To facilitate future quantitative mesh refinement studies, αGCI lookup tables herein provide a useful tool for guiding the selection of mesh refinement factor and element order.

References

1.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
New York
.
2.
Roache
,
P. J.
,
2009
, “
Perspective: Validation—What Does It Mean?
,”
ASME J. Fluids Eng.
,
131
(
3
), p.
034503
.10.1115/1.3077134
3.
ASME
,
2018
,
Assessing Credibility of Computational Modeling Through Verification and Validation: Application to Medical Devices
,
The American Society of Mechanical Engineers
,
New York
, Standard No. V&V
40
2018
.
4.
ASME
,
2020
,
Guide for Verification & Validation in Computational Solid Mechanics
,
The American Society of Mechanical Engineers
,
New York
, Standard No. V&V
10
2019
.
5.
ASME
,
2012
,
An Illustration of the Concepts of Verification and Validation in Computational Solid Mechanics
,
The American Society of Mechanical Engineers
,
New York
, Standard No. V&V 10.1-2012(R2022).
6.
ASME
,
2009
,
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,
The American Society of Mechanical Engineers
,
New York
, Standard No. V&V 20-2009(R2021).
7.
Roache
,
P. J.
,
2009
,
Fundamentals of Verification and Validation
,
Hermosa Publishers
,
Albuquerque, NM
.
8.
Baumann
,
A. P.
,
Graf
,
T.
,
Peck
,
J. H.
,
Dmitriev
,
A. E.
,
Coughlan
,
D.
, and
Lotz
,
J. C.
,
2021
, “
Assessing the Use of Finite Element Analysis for Mechanical Performance Evaluation of Intervertebral Body Fusion Devices
,”
JOR Spine
,
4
(
1
), pp.
1
9
.10.1002/jsp2.1137
9.
Migliavacca
,
F.
,
Petrini
,
L.
,
Colombo
,
M.
,
Auricchio
,
F.
, and
Pietrabissa
,
R.
,
2002
, “
Mechanical Behavior of Coronary Stents Investigated Through the Finite Element Method
,”
J. Biomech.
,
35
(
6
), pp.
803
811
.10.1016/S0021-9290(02)00033-7
10.
Ragkousis
,
G. E.
,
Curzen
,
N.
, and
Bressloff
,
N. W.
,
2014
, “
Simulation of Longitudinal Stent Deformation in a Patient-Specific Coronary Artery
,”
Med. Eng. Phys.
,
36
(
4
), pp.
467
476
.10.1016/j.medengphy.2014.02.004
11.
Bekal
,
C.
,
Shetty
,
R.
, and
Shenoy
,
S.
,
2018
, “
Numerical Investigation of Influence of Number of Stent Cells and Type of Link on Expansion and Haemodynamic Behaviour of Balloon-Expandable Coronary Stent
,”
Sādhanā
,
43
(
6
), pp.
1
12
.10.1007/s12046-018-0883-1
12.
Zaccaria
,
A.
,
Migliavacca
,
F.
,
Contassot
,
D.
,
Heim
,
F.
,
Chakfe
,
N.
,
Pennati
,
G.
, and
Petrini
,
L.
,
2021
, “
Finite Element Simulations of the ID Venous System to Treat Venous Compression Disorders: From Model Validation to Realistic Implant Prediction
,”
Ann. Biomed. Eng.
,
49
(
6
), pp.
1493
1506
.10.1007/s10439-020-02694-8
13.
Luraghi
,
G.
,
Bridio
,
S.
,
Migliavacca
,
F.
, and
Matas
,
J. F. R.
,
2022
, “
Self-Expandable Stent for Thrombus Removal Modeling: Solid or Beam Finite Elements?
,”
Med. Eng. Phys.
,
106
, p.
103836
.10.1016/j.medengphy.2022.103836
14.
Roache
,
P. J.
,
1994
, “
Perspective: A Method of Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
15.
Coleman
,
H. W.
, and
Stern
,
F.
,
1997
, “
Uncertainties and CFD Code Validation
,”
ASME. J. Fluids Eng.
,
119
(
4
), pp.
795
803
.10.1115/1.2819500
16.
ASTM
, 2020, “
Standard Practice for FEA of Non-Modular Metallic Orthopaedic Hip Femoral Stems
,”
ASTM
,
West Conshohocken, PA
, Standard No. ASTM F2996-20.
17.
ASTM
, 2019, “
Standard Practice for FEA of Metallic Orthopaedic Total Knee Tibial Components
,”
ASTM
,
West Conshohocken, PA
, Standard No. ASTM F3334-19.
18.
Roy
,
C. J.
,
2010
, “
Review of Discretization Error Estimators in Scientific Computing
,”
AIAA
Paper No. 2010-12610.2514/6.2010-126
19.
Richardson
,
L. F.
,
1911
, “
The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, With an Application to the Stresses in a Masonry Dam
,”
Philos. Trans. R. Soc. London. Ser. A
,
210
(
459–470
), pp.
307
357
.10.1098/rsta.1911.0009
20.
Roy
,
C. J.
,
2005
, “
Review of Code and Solution Verification Procedures for Computational Simulation
,”
J. Comput. Phys.
,
205
(
1
), pp.
131
156
.10.1016/j.jcp.2004.10.036
21.
Stern
,
F.
,
Wilson
,
R. V.
,
Coleman
,
H. W.
, and
Paterson
,
E. G.
,
2001
, “
Comprehensive Approach to Verification and Validation of CFD Simulations— Part 1: Methodology and Procedures
,”
ASME J. Fluid Eng.
,
123
(
4
), pp.
793
802
.10.1115/1.1412235
22.
Roache
,
P. J.
,
2003
, “
Error Bars for CFD
,”
AIAA
Paper No. AIAA-2003-40810.2514/6.2003-408
23.
Eça
,
L.
, and
Hoekstra
,
M.
,
2006
, “
2nd Workshop on CFD Uncertainty Analysis, Discretization Uncertainty Estimation Based on a Least Squares Version of the Grid Convergence Index
,”
Instituto Superior Técnico
,
Lisbon, Portugal
.
24.
Phillips
,
T. S.
, and
Roy
,
C. J.
,
2014
, “
Richardson Extrapolation-Based Discretization Uncertainty for Computational Fluid Dynamics
,”
ASME J. Fluid Eng.
,
136
(
12
), p.
121401
.10.1115/1.4027353
25.
Khoshghalb
,
A.
,
Ghaffaripour
,
O.
,
Zamani
,
K.
, and
Tootoonchi
,
A.
,
2019
, “
Code Verification in Computational Geomechanics: Method of Manufactured Solutions (MMS)
,”
Comput. Geotech.
,
116
, p.
103178
.10.1016/j.compgeo.2019.103178
26.
Reddy
,
J. N.
,
1993
,
An Introduction to the Finite Element Method
, 2nd ed.,
McGraw-Hill
,
New York
.
27.
Bathe
,
K. J.
,
1996
,
Finite Element Procedures
,
Prentice Hall
,
Hoboken, NJ
.
28.
Phillips
,
T. S.
, and
Roy
,
C. J.
,
2016
, “
A New Extrapolation-Based Uncertainty Estimator for Computational Fluid Dynamics
,”
ASME J. Verif. Valid. Uncert.
,
1
(
4
), p.
041006
.10.1115/1.4035666
29.
Cormier
,
N. G.
,
Smallwood
,
B. S.
,
Sinclair
,
G. B.
, and
Meda
,
G.
,
1999
, “
Aggressive Submodelling of Stress Concentrations
,”
Int. J. Numer. Methods Eng.
,
46
(
6
), pp.
889
909
.10.1002/(SICI)1097-0207(19991030)46:6<889::AID-NME699>3.0.CO;2-F
30.
Kardak
,
A. A.
, and
Sinclair
,
G. B.
,
2019
, “
Verification of Submodeling for the Finite Element Analysis of Stress Concentrations
,”
ASME J. Verif. Valid. Uncert.
,
4
(
3
), p.
031003
.10.1115/1.4045232
31.
Aycock
,
K. I.
,
Rebelo
,
N.
, and
Craven
,
B. A.
,
2020
, “
Method of Manufactured Solutions Code Verification of Elastostatic Solid Mechanics Problems in a Commercial Finite Element Solver
,”
Comput. Struct.
,
229
, p.
106175
.10.1016/j.compstruc.2019.106175
32.
Nagaraja
,
S.
,
Loughran
,
G.
,
Gandhi
,
A.
,
Inzana
,
J.
,
Baumann
,
A. P.
,
Kartikeya
,
K.
, and
Horner
,
M.
,
2020
, “
Verification, Validation, and Uncertainty Quantification of Spinal Rod Computational Models Under Three-Point Bending
,”
ASME J. Verif. Valid. Uncert.
,
5
(
1
), p.
011002
10.1115/1.4046329
33.
Freitas
,
C. J.
,
2020
, “
Standards and Methods for Verification, Validation, and Uncertainty Assessments in Modeling and Simulation
,”
ASME J. Verif. Valid. Uncert.
,
5
(
2
), p.
021001
.10.1115/1.4047274
34.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
35.
Simulia, Dassault Systemes
,
2017
, ‘‘
Abaqus 2017x Documentation
,
Simulia, Dassault Systemes
,
Providence, RI
.
36.
Aycock
,
K. I.
,
Rebelo
,
N.
, and
Craven
,
B. A.
,
2018
, “
Code Verification for Solid Mechanics Problems Including Superelastic Nitinol
,”
ASME
2018 V&V Symposium, Minneapolis, MN.https://archive.asme.org/wwwasmeorg/media/ResourceFiles/Events/VandV/2018VV_Program.pdf
37.
Simulia, Dassault Systemes
, 2017,
UMAT for Superelasticity and Plasticity of Shape Memory Alloys
,
Simulia, Dassault Systemes
,
Providence, RI
.
38.
Rebelo
,
N.
,
Radford
,
R.
,
Zipse
,
A.
,
Schlun
,
M.
, and
Dreher
,
G.
,
2011
, “
On Modeling Assumptions in Finite Element Analysis of Stents
,”
ASME J. Med. Dev.
,
5
(
3
), p.
031007
.10.1115/1.4004654
39.
ASTM
, 2018, “
Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials
,”
ASTM
,
West Conshohocken, PA
, Standard No. ASTM F2516-18.
40.
Simulia, Dassault Systemes
, 2017,
User's Guide for the Adjustable Rigid Torus (ART) Abaqus Extension
,
Simulia, Dassault Systemes
,
Providence, RI
.
41.
Wei
,
Y.
,
Wang
,
M.
,
Zhao
,
D.
,
Li
,
H.
, and
Jin
,
Y.
,
2019
, “
Structural Design of Mechanical Property for Biodegradable Polymeric Stent
,”
Adv. Mater. Sci. Eng.
,
2019
, pp.
1
14
.10.1155/2019/2960435
You do not currently have access to this content.