Abstract

Complex structural systems often entail computationally intensive models that require efficient methods for statistical model calibration due to the high number of required model evaluations. In this paper, we present a Bayesian inference-based methodology for efficient statistical model calibration that builds upon the combination of the speed in the computation of a low-fidelity model with the accuracy of the computationally intensive high-fidelity model. The proposed two-stage method incorporates the adaptive Metropolis algorithm and a Gaussian process (GP)-based adaptive surrogate model as a low-fidelity model. In order to account for model uncertainty, we incorporate a GP-based discrepancy function into the model calibration. By calibrating the hyperparameters of the discrepancy function alongside the model parameters, we prevent the results of the model calibration to be biased. The methodology is illustrated by the statistical model calibration of a damping parameter in the modular active spring-damper system, a structural system developed within the collaborative research center SFB 805 at the Technical University of Darmstadt. The reduction of parameter and model uncertainty achieved by the application of our methodology is quantified and illustrated by assessing the predictive capability of the mathematical model of the modular active spring-damper system.

References

1.
Babuska
,
I.
, and
Oden
,
J.
,
2004
, “
Verification and Validation in Computational Engineering and Science: Basic Concepts
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
36–38
), pp.
4057
4066
.10.1016/j.cma.2004.03.002
2.
Lee
,
G.
,
Kim
,
W.
,
Oh
,
H.
,
Youn
,
B. D.
, and
Kim
,
N. H.
,
2019
, “
Review of Statistical Model Calibration and Validation—From the Perspective of Uncertainty Structures
,”
Struct. Multidiscip. Optim.
,
60
(
4
), pp.
1619
1644
.10.1007/s00158-019-02270-2
3.
Soize
,
C.
,
2005
, “
A Comprehensive Overview of a Non-Parametric Probabilistic Approach of Model Uncertainties for Predictive Models in Structural Dynamics
,”
J. Sound Vib.
,
288
(
3
), pp.
623
652
.10.1016/j.jsv.2005.07.009
4.
Pelz
,
F. P.
,
Groche
,
P.
,
Pfetsch
,
M. E.
, and
Schaeffner
,
M.
,
2021
,
Mastering Uncertainty in Mechanical Engineering
,
Springer International Publishing
,
Cham, Switzerland
(In Print).
5.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc. Ser. B (Stat. Methodol.)
,
63
(
3
), pp.
425
464
.10.1111/1467-9868.00294
6.
Roy
,
C. J.
, and
Oberkampf
,
W. L.
,
2010
, “
A Complete Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing
,”
AIAA
Paper No. 2010-124.10.2514/6.2010-124
7.
Oberkampf
,
W. L.
,
Helton
,
J. C.
,
Joslyn
,
C. A.
,
Wojtkiewicz
,
S. F.
, and
Ferson
,
S.
,
2004
, “
Challenge Problems: Uncertainty in System Response Given Uncertain Parameters
,”
Reliab. Eng. Syst. Saf.
,
85
(
1–3
), pp.
11
19
.10.1016/j.ress.2004.03.002
8.
Smith
,
R. C.
,
2014
,
Uncertainty Quantification: Theory, Implementation, and Applications, Vol. 12 of Computational Science & Engineering
,
SIAM Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
9.
Huang
,
Y.
,
Shao
,
C.
,
Wu
,
B.
,
Beck
,
J. L.
, and
Li
,
H.
,
2019
, “
State-of-the-Art Review on Bayesian Inference in Structural System Identification and Damage Assessment
,”
Adv. Struct. Eng.
,
22
(
6
), pp.
1329
1351
.10.1177/1369433218811540
10.
Bayes
,
T.
,
1763
, “
An Essay Towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S.
,”
Philos. Trans. R. Soc. London
,
53
, pp.
370
418
.10.1098/rstl.1763.0053
11.
Robert
,
C. P.
, and
Casella
,
G.
,
2004
,
Monte Carlo Statistical Methods
(Springer Texts in Statistics), 2nd ed.,
Springer
,
New York
.
12.
Metropolis
,
N.
,
Rosenbluth
,
A. W.
,
Rosenbluth
,
M. N.
,
Teller
,
A. H.
, and
Teller
,
E.
,
1953
, “
Equation of State Calculations by Fast Computing Machines
,”
J. Chem. Phys.
,
21
(
6
), pp.
1087
1092
.10.1063/1.1699114
13.
Brooks
,
S.
,
2011
,
Handbook of Markov Chain Monte Carlo
,
Chapman & Hall/CRC Handbooks of Modern Statistical Methods. CRC Press Taylor & Francis
,
Boca Raton, FL
.
14.
Hitchcock
,
D. B.
,
2003
, “
A History of the Metropolis–Hastings Algorithm
,”
Am. Stat.
,
57
(
4
), pp.
254
257
.10.1198/0003130032413
15.
Catanach
,
T. A.
,
Vo
,
H. D.
, and
Munsky
,
B.
,
2020
, “
Bayesian Inference of Stochastic Reaction Networks Using Multifidelity Sequential Tempered Markov Chain Monte Carlo
,”
Int. J. Uncertainty Quantif.
,
10
(
6
), pp.
515
542
.10.1615/Int.J.UncertaintyQuantification.2020033241
16.
Ching
,
J.
, and
Chen
,
Y.-C.
,
2007
, “
Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging
,”
J. Eng. Mech.
,
133
(
7
), pp.
816
832
.10.1061/(ASCE)0733-9399(2007)133:7(816)
17.
Haario
,
H.
,
Laine
,
M.
,
Mira
,
A.
, and
Saksman
,
E.
,
2006
, “
Dram: Efficient Adaptive MCMC
,”
Stat. Comput.
,
16
(
4
), pp.
339
354
.10.1007/s11222-006-9438-0
18.
Vrugt
,
J. A.
,
Hyman
,
J. M.
,
Robinson
,
B. A.
,
Higdon
,
D.
,
Ter Braak
,
C. J. F.
, and
Diks
,
C. G. H.
,
2009
, “
Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution With Self-Adaptive Randomized Subspace Sampling
,”
Int. J. Nonlinear Sci. Numer. Simul.
, 10(3), pp. 273–290.10.1515/IJNSNS.2009.10.3.273
19.
Peherstorfer
,
B.
,
Willcox
,
K.
, and
Gunzburger
,
M.
,
2018
, “
Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization
,”
SIAM Rev.
,
60
(
3
), pp.
550
591
.10.1137/16M1082469
20.
Haario
,
H.
,
Saksman
,
E.
, and
Tamminen
,
J.
,
2001
, “
An Adaptive Metropolis Algorithm
,”
Bernoulli
,
7
(
2
), pp.
223
242
.10.2307/3318737
21.
Christen
,
J. A.
, and
Fox
,
C.
,
2005
, “
Markov Chain Monte Carlo Using an Approximation
,”
J. Comput. Graph. Stat.
,
14
(
4
), pp.
795
810
.10.1198/106186005X76983
22.
Ginting
,
V.
,
Pereira
,
F.
, and
Rahunanthan
,
A.
,
2013
, “
A Multi-Stage Bayesian Prediction Framework for Subsurface Flows
,”
Int. J. Uncertainty Quantif.
,
3
(
6
), pp.
499
522
.10.1615/Int.J.UncertaintyQuantification.2013005281
23.
Mondal
,
A.
,
Mallick
,
B.
,
Efendiev
,
Y.
, and
Datta-Gupta
,
A.
,
2014
, “
Bayesian Uncertainty Quantification for Subsurface Inversion Using a Multiscale Hierarchical Model
,”
Technometrics
,
56
(
3
), pp.
381
392
.10.1080/00401706.2013.838190
24.
Golightly
,
A.
,
Henderson
,
D.
, and
Sherlock
,
C.
,
2015
, “
Efficient Particle Mcmc for Exact Inference in Stochastic Biochemical Network Models Through Approximation of Expensive Likelihoods
,”
Stat. Comput.
,
25
(
5
), pp.
1039
1055
.10.1007/s11222-014-9469-x
25.
Rutter
,
C. M.
,
Miglioretti
,
D. L.
, and
Savarino
,
J. E.
,
2009
, “
Bayesian Calibration of Microsimulation Models
,”
J. Am. Stat. Assoc.
,
104
(
488
), pp.
1338
1350
.10.1198/jasa.2009.ap07466
26.
Bardsley
,
J. M.
,
Seppänen
,
A.
,
Solonen
,
A.
,
Haario
,
H.
, and
Kaipio
,
J.
,
2015
, “
Randomize-Then-Optimize for Sampling and Uncertainty Quantification in Electrical Impedance Tomography
,”
SIAM/ASA J. Uncertainty Quantif.
,
3
(
1
), pp.
1136
1158
.10.1137/140978272
27.
Cui
,
T.
,
Marzouk
,
Y. M.
, and
Willcox
,
K. E.
,
2015
, “
Data-Driven Model Reduction for the Bayesian Solution of Inverse Problems
,”
Int. J. Numer. Methods Eng.
,
102
(
5
), pp.
966
990
.10.1002/nme.4748
28.
Box
,
G. E. P.
, and
Draper
,
N. R.
,
1987
,
Empirical Model-Building and Response Surfaces
,
Wiley Series in Probability and Mathematical Statistics, Applied Probability and Statistics, Wiley
,
New York
.
29.
Brynjarsdóttir
,
J.
, and
O'Hagan
,
A.
,
2014
, “
Learning About Physical Parameters: The Importance of Model Discrepancy
,”
Inverse Probl.
,
30
(
11
), p.
114007
.10.1088/0266-5611/30/11/114007
30.
Maupin
,
K. A.
, and
Swiler
,
L. P.
,
2020
, “
Model Discrepancy Calibration Across Experimental Settings
,”
Reliab. Eng. Syst. Saf.
,
200
, p.
106818
.10.1016/j.ress.2020.106818
31.
Atamturktur
,
S.
,
Hemez
,
F.
,
Williams
,
B.
,
Tome
,
C.
, and
Unal
,
C.
,
2011
, “
A Forecasting Metric for Predictive Modeling
,”
Comput. Struct.
,
89
(
23–24
), pp.
2377
2387
.10.1016/j.compstruc.2011.06.010
32.
Feldmann
,
R.
, and
Platz
,
R.
,
2019
, “
Assessing Model Form Uncertainty for a Suspension Strut Using Gaussian Processes
,”
Proceedings of the Third International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019)
, Crete, Greece, June 24–26, Paper No. 18531.
33.
Goller
,
B.
, and
Schuëller
,
G. I.
,
2011
, “
Investigation of Model Uncertainties in Bayesian Structural Model Updating
,”
J. Sound Vib.
,
330
(
25
), pp.
6122
6136
.10.1016/j.jsv.2011.07.036
34.
Andrieu
,
C.
, and
Thoms
,
J.
,
2008
, “
A Tutorial on Adaptive MCMC
,”
Stat. Comput.
,
18
(
4
), pp.
343
373
.10.1007/s11222-008-9110-y
35.
Wagner
,
P.-R.
,
Nagel
,
J.
,
Marelli
,
S.
, and
Sudret
,
B.
,
2021
, “
UQLAB User Manual – Bayesian Inversion for Model Calibration and Validation
,” Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich, Switzerland, Report No. UQLab-V1.4-113.
36.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2008
,
Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning), 3rd ed.,
MIT Press
,
Cambridge, MA
.
37.
Mathworks,
2018
,
Statistics and Machine Learning ToolboxTM: User's Guide
,
MathWorks
,
Natick, MA
.
38.
Rasmussen
,
C. E.
,
2003
, “
Gaussian Processes in Machine Learning
,”
Advanced Lectures on Machine Learning
(Lecture Notes in Computer Science, Vol. 3176),
O.
Bousquet
,
U.
von Luxburg
, and
G.
Rätsch
eds.,
Springer
,
Berlin Heidelberg
, pp.
63
71
.
39.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of ICNN'95-International Conference on Neural Networks
, Vol.
4
, pp.
1942
1948
.
40.
Mallapur
,
S.
, and
Platz
,
R.
,
2019
, “
Uncertainty Quantification in the Mathematical Modelling of a Suspension Strut Using Bayesian Inference
,”
Mech. Syst. Signal Process.
,
118
, pp.
158
170
.10.1016/j.ymssp.2018.08.046
41.
Feldmann
,
R.
,
Schäffner
,
M.
,
Gehb
,
C. M.
,
Platz
,
R.
, and
Melz
,
T.
,
2020
, “
Analyzing Propagation of Model Form Uncertainty for Different Suspension Strut Models
,”
Model Validation and Uncertainty Quantification
(Conference Proceedings of the Society for Experimental Mechanics Series), Vol.
3
,
Z.
Mao
, ed., Springer International Publishing and Imprint,
Springer
, Cham, Switzerland, pp.
255
263
.10.1007/978-3-030-47638-0_28
42.
Locke
,
R.
,
Kupis
,
S.
,
Gehb
,
C. M.
,
Platz
,
R.
, and
Atamturktur
,
S.
,
2019
, “
Applying Uncertainty Quantification to Structural Systems: Parameter Reduction for Evaluating Model Complexity
,”
Model Validation and Uncertainty Quantification
(Conference Proceedings of the Society for Experimental Mechanics Series), Vol.
3
,
J.
Barthorpe Robert
,
Springer International Publishing
, Cham, Switzerland, pp.
241
256
.10.1007/978-3-030-12075-7_28
43.
Gelman
,
A.
,
Carlin
,
J. B.
,
Stern
,
H. S.
,
Dunson
,
D. B.
,
Vehtari
,
A.
, and
Rubin
,
D. B.
,
2014
,
Bayesian Data Analysis: Third Edition
(Texts in Statistical Science Series), 3rd ed.,
CRC Press Taylor and Francis Group
,
Boca Raton and London and New York
.
44.
Darnieder
,
W. F.
, “
Bayesian Methods for Data-Dependent Priors,” Ph.D.
thesis,
The Ohio State University
, Columbus, OH.
45.
Brooks
,
S. P.
, and
Gelman
,
A.
,
1998
, “
General Methods for Monitoring Convergence of Iterative Simulations
,”
J. Comput. Graph. Stat.
,
7
(
4
), pp.
434
455
.10.2307/1390675
46.
Kullback
,
S.
, and
Leibler
,
R. A.
,
1951
, “
On Information and Sufficiency
,”
Ann. Math. Stat.
,
22
(
1
), pp.
79
86
.10.1214/aoms/1177729694
47.
Green
,
P. J.
,
1995
, “
Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination
,”
Biometrika
,
82
(
4
), pp.
711
732
.10.1093/biomet/82.4.711
You do not currently have access to this content.