Abstract

When stress concentration factors are not available in handbooks, finite element analysis has become the predominant method for determining their values. For such determinations, there is a need to know if they have sufficient accuracy. Tuned Test Problems can provide a way of assessing the accuracy of stress concentration factors found with finite elements. Here we offer a means of constructing such test problems for stress concentrations within boundaries that have local constant radii of curvature. These problems are tuned to their originating applications by sharing the same global geometries and having slightly higher peak stresses and stress gradients. Consequently, they are incrementally more challenging to solve with finite elements than their originating applications. They also have exact solutions. Thus, a precise determination can be made of the errors incurred in their finite element analysis.

References

1.
Peterson
,
R. E.
,
1974
,
Stress Concentration Factors
,
Wiley
,
New York
.
2.
Pilkey
,
W. D.
, and
Pilkey
,
D. F.
,
2008
,
Peterson's Stress Concentration Factors
, 3rd ed.,
Wiley
,
Hoboken, NJ
.
3.
Steinberg
,
S.
, and
Roache
,
P. J.
,
1985
, “
Symbolic Manipulation and Computational Fluid Dynamics
,”
J. Comput. Phys.
,
57
(
2
), pp.
251
284
.10.1016/0021-9991(85)90045-2
4.
Roache
,
P. J.
,
2009
,
Fundamentals of Verification and Validation
,
Hermosa Pub
,
Socorro, NM
.
5.
Sinclair
,
G. B.
,
Anaya-Dufresne
,
M.
,
Meda
,
G.
, and
Okajima
,
M.
,
1997
, “
Tuned Test Problems for Numerical Methods in Engineering
,”
Int. J. Numer. Methods Eng.
,
40
(
22
), pp.
4183
4209
.10.1002/(SICI)1097-0207(19971130)40:22<4183::AID-NME252>3.0.CO;2-7
6.
Roy
,
C. J.
, and
Hopkins
,
M. M.
,
2003
, “
Discretization Error Estimates Using Exact Solutions to Nearby Problems
,”
AIAA
Paper No. 2003-0629, pp.
1
12
.10.2514/6.2003-629
7.
Roy
,
C. J.
, and
Sinclair
,
A. J.
,
2009
, “
On the Generation of Exact Solutions for Evaluating Numerical Schemes and Estimating Discretization Error
,”
J. Comput. Phys.
,
228
(
5
), pp.
1790
1802
.10.1016/j.jcp.2008.11.008
8.
Michell
,
J. H.
,
1899
, “
On the Direct Determination of Stress in an Elastic Solid, With Application to the Theory of Plates
,”
Proc. Lond. Math. Soc.
,
s1–31
(
1
), pp.
100
124
.10.1112/plms/s1-31.1.100
9.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
,
1970
,
Theory of Elasticity
, 3rd ed,
McGraw-Hill
,
New York
.
10.
Lamé
,
M. G.
,
1852
,
Leçons Sur la Théorie Mathématique de L'Élasticité Des Corps Solides
,
Bachelier
,
Paris, France
.
11.
Kirsch
,
G.
,
1898
, “
Die Theorie Der Elastizität Und Die Bedürfnisse Der Festigkeitslehre
,”
Z. Vereines Deutsch. Ing.
,
42
(
7
), pp.
797
807
.
12.
Cole
,
A. G.
, and
Brown
,
A. F. C.
,
1958
, “
Photoelastic Determination of Stress Concentration Factors Caused by a Single U-Notch on One Side of a Plate in Tension
,”
J. Roy. Aero. Soc.
,
62
(
572
), pp.
597
598
.10.1017/S0368393100069339
13.
ANSYS
,
2020
,
ANSYS Mechanical APDL Element Reference Guide
, Rev. 19.0,
Ansys Inc
.,
Canonsburg, PA
.
14.
ANSYS
,
2020
,
ANSYS Mechanical APDL Verification Manual
, Rev. 19.0,
Ansys Inc
.,
Canonsburg, PA
.
15.
ANSYS
,
2020
,
ANSYS Mechanical APDL Modeling and Meshing Guide
, Rev. 19.0,
Ansys Inc
.,
Canonsburg, PA
.
16.
Cox
,
J. V.
,
2018
, “
Solid Mechanics Code Verification: Contrasting Classical and Manufactured Solutions
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2018-10820.
17.
ASME
,
2006
, “
Guide for Verification and Validation in Computational Solid Mechanics
,”
American Society of Mechanical Engineers
,
New York
,
ASME Standard No. V&V 10.
18.
ASME
,
2012
, “
An Illustration of the Concepts of Verification and Validation in Computational Solid Mechanics
,”
American Society of Mechanical Engineers
,
New York
,
ASME Standard No. V&V 10.1.
19.
Sinclair
,
G. B.
,
Beisheim
,
J. R.
, and
Roache
,
P. J.
,
2016
, “
Effective Convergence Checks for Verifying Finite Element Stresses at Two-Dimensional Stress Concentrations
,”
ASME J. Verif. Valid. Uncert. Quant.
,
1
(
4
), p.
041003
.10.1115/1.4034977
20.
Wilson
,
I. H.
, and
White
,
D. J.
,
1973
, “
Stress-Concentration Factors for Shoulder Fillets and Grooves in Plates
,”
J. Strain. Anal. Eng. Des.
,
8
(
1
), pp.
43
51
.10.1243/03093247V081043
21.
Kardak
,
A. A.
, and
Sinclair
,
G. B.
,
2021
, “
Three-Dimensional Finite Element Analysis of a Filleted Cylindrical Shaft Subjected to Bending
,”
Department of Mechanical Engineering, Louisiana State University
,
Baton Rouge, LA
, Report No. ME-MS3-21.
22.
Kardak
,
A. A.
, and
Sinclair
,
G. B.
,
2021
, “
Stress Concentration Factors for C-Clamps
,”
Department of Mechanical Engineering, Louisiana State University
,
Baton Rouge, LA
, Report No. ME-MS1-21.
23.
Andrus
,
T. M.
, and
Sinclair
,
G. B.
,
2020
, “
Verification of Finite Element Analysis for the Stress Concentrations Occuring at V-Shaped Notches Using Tuned Test Problems
,”
Department of Mechanical Engineering, Louisiana State University
,
Baton Rouge, LA
, Report No. ME-MS2-20.
You do not currently have access to this content.