Abstract

Fire scene reconstruction and determining the fire evolution (i.e., item-to-item ignition events) using the postfire compartment is an extremely difficult task because of the time-integrated nature of the observed damages. Bayesian methods are ideal for making inferences amongst hypotheses given observations and are able to naturally incorporate uncertainties. A Bayesian methodology for determining probabilities to items that may have initiated the fire in a compartment from damage signatures is developed. Exercise of this methodology requires uncertainty quantification of these damage signatures. A simple compartment configuration was used to quantify the uncertainty in damage predictions by firedynamicssimulator (fds) and, a compartment evolution program, jt-risk as compared to experimentally derived damage signatures. Surrogate sensors spaced within the compartment use heat flux data collected over the course of the simulations to inform damage models. Experimental repeatability showed up to 4% uncertainty in damage signatures between replicates. Uncertainties for fds and jt-risk ranged from 12% up to 32% when compared to experimental damages. Separately, the evolution physics of a simple three-fuel-package problem with surrogate damage sensors were characterized in a compartment using experimental data, fds, and jt-risk predictions. A simple ignition model was used for each of the fuel packages. The Bayesian methodology was exercised using the damage signatures collected, cycling through each of the three fuel packages, and combined with the previously quantified uncertainties. Only reconstruction using experimental data was able to confidently predict the true hypothesis from the three scenarios.

References

1.
NFPA,
2014
, “
Guide for Fire and Explosion Investigations
,”
National Fire Protection Association
, Standard No. NFPA 921.
2.
National Research Council
,
2009
, “
Strengthening Forensic Science in the United States: A Path Forward
,” National Research Council, Washington, DC.
3.
Gorbett
,
G. E.
, and
Chapdelaine
,
W.
,
2014
, “
Scientific Method—Use, Application, and Gap Analysis for Origin Determination
,”
International Symposium on Fire Investigation Science and Technology
, Sarasota, FL, pp.
3
16
.https://ssem.eku.edu/sites/ssem.eku.edu/files/gorbett_-_scientific_methoduse_application_and_gap_analysis.pdf
4.
Cox
,
A.
,
2013
, “
Origin Matrix Analysis: A Systematic Methodology for the Assessment and Interpretation of Compartment Fire Damage
,”
Fire Arson Invest.
,
64
(
1
), pp.
1
27
.https://docplayer.net/44671261-Origin-matrix-analysis-a-systematic-methodology-for-post-fire-investigation-and-analysis-ofcompartment-fires.html
5.
Gorbett
,
G. E.
,
Meacham
,
B. J.
,
Wood
,
C. B.
, and
Dembsey
,
N. A.
,
2015
, “
Use of Damage in Fire Investigation: A Review of Fire Patterns Analysis, Research and Future Direction
,”
Fire Sci. Rev.
,
4
(
1
), p.
4
.10.1186/s40038-015-0008-4
6.
Hicks
,
W.
,
Gorbett
,
G. E.
,
Kennedy
,
P. M.
,
Hopkins
,
R. L.
, and
Abney
,
W. M.
,
2006
, “
Advanced Fire Pattern Research Project: Single Fuel Package Fire Pattern Study
,”
2006 International Symposium on Fire Investigation Proceedings, National Association of Fire Investigators
, Sarasota, FL.https://docplayer.net/101730384-Advanced-fire-pattern-research-project-single-fuel-package-fire-pattern-study.html
7.
Hicks
,
W.
,
Gorbett
,
G. E.
,
Hopkins
,
M. C.
,
Kennedy
,
P. M.
,
Hopkins
,
R. L.
, and
Thurman
,
J. T.
,
2008
, “
Full-Scale Single Fuel Package Fire Pattern Study
,”
2008 International Symposium on Fire Investigation Proceedings, National Association of Fire Investigators
, Sarasota, FL.https://ssem.eku.edu/sites/ssem.eku.edu/files/hicks_gorbett_thurman-_full_scale_single_fuel_package_fire_pattern_study.pdf
8.
Hopkins
,
R. L.
,
Gorbett
,
G.
, and
Kennedy
,
P.
,
1997
, “Fire Pattern Persistence and Predictability on Interior Finish and Construction Materials During Pre and Post Flashover Compartment Fires”.
9.
Madrzykowski
,
D.
,
Fleischmann
,
C.
,
Hall
,
J. R.
,
Mitchell
,
M. R.
, and
Link
,
R. E.
,
2012
, “
Fire Pattern Repeatability: A Study in Uncertainty
,”
J. Test. Eval.
,
40
(
1
), p.
104261
.10.1520/JTE104261
10.
Stauffer
,
E.
,
2019
, “
Interpol Review of Fire Investigation 2016–2019
,”
Forensic Sci. Int.
,
2
, pp.
368
381
.10.1016/j.fsisyn.2020.01.005
11.
Wang
,
J.
, and
Zabaras
,
N.
,
2004
, “
A Bayesian Inference Approach to the Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3927
3941
.10.1016/j.ijheatmasstransfer.2004.02.028
12.
Biedermann
,
A.
,
Taroni
,
F.
,
Delemont
,
O.
,
Semadeni
,
C.
, and
Davison
,
A. C.
,
2005
, “
The Evaluation of Evidence in the Forensic Investigation of Fire Incidents (Part I): An Approach Using Bayesian Networks
,”
Forensic Sci. Int.
,
147
(
1
), pp.
49
57
.10.1016/j.forsciint.2004.04.014
13.
Biedermann
,
A.
,
Taroni
,
F.
,
Delemont
,
O.
,
Semadeni
,
C.
, and
Davison
,
A. C.
,
2005
, “
The Evaluation of Evidence in the Forensic Investigation of Fire Incidents. Part II. Practical Examples of the Use of Bayesian Networks
,”
Forensic Sci. Int.
,
147
(
1
), pp.
59
69
.10.1016/j.forsciint.2004.04.015
14.
Nordgaard
,
A.
, and
Rasmusson
,
B.
,
2017
, “
The Likelihood Ratio as Value of Evidence—More Than a Question of Numbers
,”
Fire Technol.
,
53
, pp.
301
327
.
15.
Overholt
,
K. J.
, and
Ezekoye
,
O. A.
,
2012
, “
Characterizing Heat Release Rates Using an Inverse Fire Modeling Technique
,”
Fire Technol.
,
48
(
4
), pp.
893
909
.10.1007/s10694-011-0250-9
16.
Overholt
,
K. J.
,
2013
, “
Forward and Inverse Modeling of Fire Physics Towards Fire Scene Reconstructions
,” University of Texas, Austin Dissertation.
17.
Overholt
,
K. J.
, and
Ezekoye
,
O. A.
,
2015
, “
Quantitative Testing of Fire Scenario Hypotheses: A Bayesian Inference Approach
,”
Fire Technol.
,
51
(
2
), pp.
335
367
.10.1007/s10694-013-0384-z
18.
Kurzawski
,
A. J.
,
Cabrera
,
J. M.
, and
Ezekoye
,
O. A.
,
2020
, “
Model Considerations for Fire Scene Reconstruction Using a Bayesian Framework
,”
Fire Technol.
,
56
(
2
), pp.
445
467
.10.1007/s10694-019-00886-w
19.
Cabrera
,
J.-M.
,
Moser
,
R. D.
, and
Ezekoye
,
O. A.
,
2019
, “
A Bayesian Method for Determining the Fire Evolution Within a Compartment
,”
ASTFE Digital Library
,
Begel House
, Las Vegas, NV.
20.
Shields
,
T. J.
,
Silcock
,
G. W.
, and
Murray
,
J. J.
,
1994
, “
Evaluating Ignition Data Using the Flux Time Product
,”
Fire Mater.
,
18
(
4
), pp.
243
254
.10.1002/fam.810180407
21.
Modak
,
A. T.
,
1977
, “
Thermal Radiation From Pool Fires
,”
Combust. Flame
,
29
, pp.
177
192
.10.1016/0010-2180(77)90106-7
22.
Quintiere
,
J. G.
,
2006
,
Fundamentals of Fire Phenomena
,
Wiley
, West Sussex, England.
23.
McDermott
,
R.
,
Forney
,
G.
,
McGrattan
,
K.
, and
Mell
,
W.
,
2010
, “
Fire Dynamics Simulator 6: Complex Geometry, Embedded Meshes, and Quality Assessment
,”
V European Conference on Computational Fluid Dynamics (ECCOMAS)
,
J. C. F.
Pereira
and
A.
Sequeira
, eds., Lisbon, Portugal, pp.
1
23
.
24.
McGrattan
,
K.
,
Hostikka
,
S.
,
McDermott
,
R.
,
Floyd
,
J.
,
Weinschenk
,
C.
, and
Overholt
,
K.
,
2013
, “
Fire Dynamics Simulator, Technical Reference Guide, Volume 2: Verification
,” NIST Special Publication, Gaithersburg, MD, Report No.
1018
2
.
25.
Stoll
,
A. M.
, and
Greene
,
L. C.
,
1959
, “
Relationship Between Pain and Tissue Damage Due to Thermal Radiation
,”
J. Appl. Physiol.
,
14
(
3
), pp.
373
382
.10.1152/jappl.1959.14.3.373
26.
Moritz
,
A. R.
, and
Henriques
,
F. C.
,
1947
, “
Studies of Thermal Injury: II. The Relative Importance of Time and Surface Temperature in the Causation of Cutaneous Burns
,”
Am. J. Pathol.
,
23
(
5
), pp.
695
720
.https://pubmed.ncbi.nlm.nih.gov/19970955/
27.
Henriques
,
F. C.
,
1947
, “
Studies of Thermal Injury V. The Predictability and the Significance of Thermally Induced Rate Processes Leading to Irreversible Epidermal Injury
,”
Arch. Pathol.
,
43
(
5
), pp.
489
502
.https://europepmc.org/article/MED/20243514
28.
Anderson
,
A.
, and
Ezekoye
,
O. A.
,
2018
, “
Quantifying Generalized Residential Fire Risk Using Ensemble Fire Models With Survey and Physical Data
,”
Fire Technol.
,
54
(
3
), pp.
715
747
.10.1007/s10694-018-0709-z
29.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
, Argonne, IL.
30.
Agrawal
,
R. K.
,
1985
, “
On the Use of the Arrhenius Equation to Describe Cellulose and Wood Pyrolysis
,”
Thermochim. Acta
,
91
, pp.
343
349
.10.1016/0040-6031(85)85227-8
31.
NFPA
,
2019
, “
Standard Methods of Fire Tests for Evaluating Contribution of Wall and Ceiling Interior Finish to Room Fire Growth
,”
National Fire Protection Agency
, Standard No. NFPA 286.
32.
ASTM
,
2016
, “
Standard Test Method for Measuring Heat Flux Using Directional Flame Thermometers With Advanced Data Analysis Techniques
,”
American Society for Testing and Materials
,
West Conshohocken, PA
, Standard No. ASTM E
3057
16
.
33.
Cabrera
,
J. M.
,
Moser
,
R. D.
, and
Ezekoye
,
O. A.
,
2020
, “
A Modified Directional Flame Thermometer: Development, Calibration, and Uncertainty Quantification
,”
ASME J. Verif., Validation, Uncertainty Quantif.
,
5
(
1
), p.
011003
.10.1115/1.4046657
You do not currently have access to this content.