Abstract

The incompressible steady-state fluid flow inside a lid-driven square cavity was simulated using the mass conservation and Navier–Stokes equations. This system of equations is solved for Reynolds numbers of up to 10,000 to the accuracy of the computational machine round-off error. The computational model used was the second-order accurate finite volume (FV) method. A stable solution is obtained using the iterative multigrid methodology with 8192 × 8192 volumes, while degree-10 interpolation and Richardson extrapolation were used to reduce the discretization error. The solution vector comprised five entries of velocities, pressure, and location. For comparison purposes, 65 different variables of interest were chosen, such as velocity profile, its extremum values and location, and extremum values and location of the stream function. The discretization error for each variable of interest was estimated using two types of estimators and their apparent order of accuracy. The variations of the 11 selected variables are shown across 38 Reynolds number values between 0.0001 and 10,000. In this study, we provide a more accurate determination of the Reynolds number value at which the upper secondary vortex appears. The results of this study were compared with those of several other studies in the literature. The current solution methodology was observed to produce the most accurate solution till date for a wide range of Reynolds numbers.

References

1.
Kawaguti
,
M.
,
1961
, “
Numerical Solution of the Navier-Stokes Equations for the Flow in a Two-Dimensional Cavity
,”
J. Phys. Soc. Jpn.
,
16
(
11
), pp.
2307
2315
.10.1143/JPSJ.16.2307
2.
Burggraf
,
O. R.
,
1966
, “
Analytical and Numerical Studies of the Structure of Steady Separated Flows
,”
J. Fluid Mech.
,
24
(
1
), pp.
113
151
.10.1017/S0022112066000545
3.
Rubin
,
S. G.
, and
Khosla
,
P. K.
,
1977
, “
Polynomial Interpolation Methods for Viscous Flow Calculations
,”
J. Comput. Phys.
,
24
(
3
), pp.
217
244
.10.1016/0021-9991(77)90036-5
4.
Nallasamy
,
M.
, and
Prasad
,
K. K.
,
1977
, “
On Cavity Flow at High Reynolds Numbers
,”
J. Fluid Mech.
,
79
(
2
), pp.
391
414
.10.1017/S0022112077000214
5.
Benjamin
,
A. S.
, and
Denny
,
V. E.
,
1979
, “
On the Convergence of Numerical Solutions for 2-D Flows in a Cavity at Large Re
,”
J. Comput. Phys.
,
33
(
3
), pp.
340
358
.10.1016/0021-9991(79)90160-8
6.
Ghia
,
U.
,
Ghia
,
K. N.
, and
Shin
,
C. T.
,
1982
, “
High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method
,”
J. Comput. Phys.
,
48
(
3
), pp.
387
411
.10.1016/0021-9991(82)90058-4
7.
Schreiber
,
R.
, and
Keller
,
H. B.
,
1983
, “
Driven Cavity Flows by Efficient Numerical Techniques
,”
J. Comput. Phys.
,
49
(
2
), pp.
310
333
.10.1016/0021-9991(83)90129-8
8.
Vanka
,
S. P.
,
1986
, “
Block-Implicit Multigrid Solution of Navier-Stokes Equations in Primitive Variables
,”
J. Comput. Phys.
,
65
(
1
), pp.
138
158
.10.1016/0021-9991(86)90008-2
9.
Nishida
,
H.
, and
Satofuka
,
N.
,
1992
, “
Higher-Order Solutions of Square Driven Cavity Flow Using a Variable-Order Multi-Grid Method
,”
Int. J. Numer. Methods Eng.
,
34
(
2
), pp.
637
653
.10.1002/nme.1620340215
10.
Hou
,
S.
,
Zou
,
Q.
,
Chen
,
S.
,
Doolen
,
G.
, and
Cogley
,
A. C.
,
1995
, “
Simulation of Cavity Flow by Lattice Boltzmann Method
,”
J. Comput. Phys.
,
118
(
2
), pp.
329
347
.10.1006/jcph.1995.1103
11.
Wright
,
N. G.
, and
Gaskell
,
P. H.
,
1995
, “
An Efficient Multigrid Approach to Solving Highly Recirculating Flows
,”
Comput. Fluids
,
24
(
1
), pp.
63
79
.10.1016/0045-7930(94)00017-S
12.
Barragy
,
E.
, and
Carey
,
G. F.
,
1997
, “
Stream Function-Vorticity Driven Cavity Solution Using p Finite Elements
,”
Comput. Fluids
,
26
(
5
), pp.
453
468
.10.1016/S0045-7930(97)00004-2
13.
Botella
,
O.
, and
Peyret
,
R.
,
1998
, “
Benchmark Spectral Results on the Lid-Driven Cavity Flow
,”
Comput. Fluids
,
27
(
4
), pp.
421
433
.10.1016/S0045-7930(98)00002-4
14.
Erturk
,
E.
,
Corke
,
T. C.
, and
Gökçöl
,
C.
,
2005
, “
Numerical Solutions of 2-D Steady Incompressible Driven Cavity Flow at High Reynolds Numbers
,”
Int. J. Numer. Methods Fluids
,
48
(
7
), pp.
747
774
.10.1002/fld.953
15.
Bruneau
,
C. H.
, and
Saad
,
M.
,
2006
, “
The 2D Lid-Driven Cavity Problem Revisited
,”
Comput. Fluids
,
35
(
3
), pp.
326
348
.10.1016/j.compfluid.2004.12.004
16.
Marchi
,
C. H.
,
Suero
,
R.
, and
Araki
,
L. K.
,
2009
, “
The Lid-Driven Square Cavity Flow: Numerical Solution With a 1024 × 1024 Grid
,”
J. Braz. Soc. Mech. Sci. Eng.
,
31
(
3
), pp.
186
198
.10.1590/S1678-58782009000300004
17.
Erturk
,
E.
,
2009
, “
Discussions on Driven Cavity Flow
,”
Int. J. Numer. Methods Fluids
,
60
(
3
), pp.
275
294
.10.1002/fld.1887
18.
Tian
,
Z.
,
Liang
,
X.
, and
Yu
,
P.
,
2011
, “
A Higher Order Compact Finite Difference Algorithm for Solving the Incompressible Navier-Stokes Equations
,”
Int. J. Numer. Methods Eng.
,
88
(
6
), pp.
511
532
.10.1002/nme.3184
19.
Khorasanizade
,
S.
, and
Sousa
,
J. M. M.
,
2014
, “
A Detailed Study of Lid-Driven Cavity Flow at Moderate Reynolds Numbers Using Incompressible SPH
,”
Int. J. Numer. Methods Fluids
,
76
(
10
), pp.
653
668
.10.1002/fld.3949
20.
Marchi
,
C. H.
,
Martins
,
M. A.
,
Novak
,
L. A.
,
Araki
,
L. K.
,
Pinto
,
M. A. V.
,
Gonçalves
,
S. F. T.
,
Moro
,
D. F.
, and
Freitas
,
I. S.
,
2016
, “
Polynomial Interpolation With Repeated Richardson Extrapolation to Reduce Discretization Error in CFD
,”
Appl. Math. Modell.
,
40
(
21–22
), pp.
8872
8885
.10.1016/j.apm.2016.05.029
21.
AbdelMigid
,
T. A.
,
Saqr
,
K. M.
,
Kotb
,
M. A.
, and
Aboelfarag
,
A. A.
,
2017
, “
Revisiting the Lid-Driven Cavity Flow Problem: Review and New Steady State Benchmarking Results Using GPU Accelerated Code
,”
Alexandria Eng. J.
,
56
(
1
), pp.
123
135
.10.1016/j.aej.2016.09.013
22.
Yu
,
Q.
,
Xu
,
H.
,
Liao
,
S.
, and
Yang
,
Z.
,
2019
, “
A Novel Homotopy-Wavelet Approach for Solving Stream Function-Vorticity Formulation of Navier-Stokes Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
67
, pp.
124
151
.10.1016/j.cnsns.2018.07.001
23.
Romanò
,
F.
, and
Kuhlmann
,
H. C.
,
2017
, “
Smoothed-Profile Method for Momentum and Heat Transfer in Particulate Flows
,”
Int. J. Numer. Methods Fluids
,
83
(
6
), pp.
485
512
.10.1002/fld.4279
24.
Albensoeder
,
S.
, and
Kuhlmann
,
H. C.
,
2005
, “
Accurate Three-Dimensional Lid-Driven Cavity Flow
,”
J. Comput. Phys.
,
206
(
2
), pp.
536
558
.10.1016/j.jcp.2004.12.024
25.
Shankar
,
P. N.
, and
Deshpande
,
M. D.
,
2000
, “
Fluid Mechanics in the Driven Cavity
,”
Annu. Rev. Fluid Mech.
,
32
(
1
), pp.
93
136
.10.1146/annurev.fluid.32.1.93
26.
Kuhlmann
,
H. C.
, and
Romanò
,
F.
,
2019
, “
The Lid-Driven Cavity
,”
Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics
,
A.
Gelfgat
, ed.,
Springer
, Cham, Switzerland, pp.
233
309
.
27.
Taylor
,
G. I.
,
1962
, “
On Scraping Viscous Fluid From a Plane Surface
,”
Miszellangen der Angewandten Mechanik
,
M.
Shafer
, ed.,
Akademie - Verlag
,
Berlin
, pp.
313
315
.
28.
Romanò
,
F.
,
Tûrkbay
,
T.
, and
Kuhlmann
,
H. C.
,
2020
, “
Lagrangian Chaos in Steady Three-Dimensional Lid-Driven Cavity Flow
,”
Chaos
,
30
(
7
), p.
073121
.10.1063/5.0005792
29.
Stremler
,
M. A.
, and
Chen
,
J.
,
2007
, “
Generating Topological Chaos in Lid-Driven Cavity Flow
,”
Phys. Fluids
,
19
(
10
), p.
103602
.10.1063/1.2772881
30.
ASME
,
2009
, “
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,”
ASME, New York, Standard No. ASME V&V 20-2009.
31.
Ferziger
,
J. H.
,
Peric
,
M.
, and
Street
,
R. L.
,
2020
,
Computational Methods for Fluid Dynamics
, 4th ed.,
Springer Nature
,
Cham, Switzerland
.
32.
Khosla
,
P. K.
, and
Rubin
,
S. G.
,
1974
, “
A Diagonally Dominant Second-Order Accurate Implicit Scheme
,”
Comput. Fluids
,
2
(
2
), pp.
207
209
.10.1016/0045-7930(74)90014-0
33.
Stone
,
H. L.
,
1968
, “
Iterative Solution of Implicit Approximations of Multidimensional Partial Differential Equations
,”
SIAM J. Numer. Anal.
,
5
(
3
), pp.
530
558
.10.1137/0705044
34.
Caretto
,
L. S.
,
Gosman
,
A. D.
,
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
Two Calculation Procedures for Steady, Three-Dimensional Flows With Recirculation
,”
Proceedings of the Third International Conference on Numerical Methods in Fluid Dynamics
,
Paris, France
.
35.
Rhie
,
C. M.
, and
Chow
,
W. L.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
(
11
), pp.
1525
1532
.10.2514/3.8284
36.
Hackbusch
,
W.
,
1985
,
Multi-Grid Methods and Applications
,
Springer
,
Berlin
.
37.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
38.
Bertoldo
,
G.
, and
Marchi
,
C. H.
,
2017
, “
Verification and Validation of the Foredrag Coefficient for Supersonic and Hypersonic Flow of Air Over a Cone of Fineness Ratio 3
,”
Appl. Math. Modell.
,
44
, pp.
409
424
.10.1016/j.apm.2017.01.090
39.
Marchi
,
C. H.
, and
Silva
,
A. F. C.
,
2002
, “
Unidimensional Numerical Solution Error Estimation for Convergent Apparent Order
,”
Numer. Heat Transfer, Part B
,
42
(
2
), pp.
167
188
.10.1080/10407790190053888
You do not currently have access to this content.