Abstract

Validating turbulence models for cooling supercritical carbon dioxide (sCO2) in a horizontal pipe is challenging due to the lack of experimental data with spatially resolved local temperature measurements. Although many variables may be present to cause discrepancies between numerical and experimental data, this study focuses on how the choice of reference temperatures (both wall reference temperature and fluid bulk reference temperature) when calculating the heat transfer coefficient influences turbulence-model validation results. While it may seem straightforward to simply use the same parameters as the experimental setup, this has not been observed in practice. In this work, numerical simulations are performed for cooling sCO2 in a horizontal pipe for p = 8 MPa, d = 6 mm, G= 200, and 400 kg/(m2s), and qw = 12, 24, and 33 kW/m2. Local and average heat transfer coefficients with different reference temperatures, found to be frequently used in the literature, are presented and compared with commonly used experimental data. It was found that the choice of reference temperatures has a significant influence on the results of the numerical validation. Historically, the higher heat flux cases have been more difficult to validate, theorized due to using reference temperatures differing from the experiment; however, good agreement was found here using the reference temperatures that most closely matched the experiment. This not only highlights the need for careful selection of reference temperatures in simulations, but also the importance of clearly defining the reference temperature employed when reporting experimental results.

References

1.
Bringer
,
R. P.
, and
Smith
,
J. M.
,
1957
, “
Heat Transfer in the Critical Region
,”
AIChE J.
,
3
(
1
), pp.
49
55
.10.1002/aic.690030110
2.
Wang
,
J.
,
Guan
,
Z.
,
Gurgenci
,
H.
,
Sun
,
Y.
, and
Hooman
,
K.
,
2020
, “
A Comprehensive Review on Numerical Approaches to Simulate Heat Transfer of Turbulent Supercritical CO2 Flows
,”
Numer. Heat Transfer, Part B: Fundam.
,
77
(
5
), pp.
349
400
.10.1080/10407790.2020.1720440
3.
Xie
,
J.
,
Liu
,
D.
,
Yan
,
H.
,
Xie
,
G.
, and
Boetcher
,
S.
,
2020
, “
A Review of Heat Transfer Deterioration of Supercritical Carbon Dioxide Flowing in Vertical Tubes: Heat Transfer Behaviors, Identification Methods, Critical Heat Fluxes, and Heat Transfer Correlations
,”
Int. J. Heat Mass Transfer
,
149
, p.
119233
.10.1016/j.ijheatmasstransfer.2019.119233
4.
Dang
,
C.
, and
Hihara
,
E.
,
2004
, “
In-Tube Cooling Heat Transfer of Supercritical Carbon Dioxide. Part 1—Experimental Measurement
,”
Int. J. Refrig.
,
27
(
7
), pp.
736
747
.10.1016/j.ijrefrig.2004.04.018
5.
Dang
,
C.
, and
Hihara
,
E.
,
2004
, “
In-Tube Cooling Heat Transfer of Supercritical Carbon Dioxide. Part 2—Comparison of Numerical Calculation With Different Turbulence Models
,”
Int. J. Refrig.
,
27
(
7
), pp.
748
760
.10.1016/j.ijrefrig.2004.04.017
6.
Bellmore
,
C. P.
, and
Reid
,
R. L.
,
1983
, “
Numerical Prediction of Wall Temperatures for Near-Critical Para-Hydrogen in Turbulent Upflow Inside Vertical Tubes
,”
ASME J. Heat Transfer-Trans. ASME
,
105
(
3
), pp.
536
541
.10.1115/1.3245618
7.
Jones
,
W.
, and
Launder
,
B.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
301
314
.10.1016/0017-9310(72)90076-2
8.
Launder
,
B.
, and
Sharma
,
B.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning disc
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
131
137
.10.1016/0094-4548(74)90150-7
9.
Myong
,
H. K.
, and
Kasagi
,
N.
,
1990
, “
A New Approach to the Improvement of k-ε Turbulence Model for Wall-Bounded Shear-Flows
,”
JSME Int. J. Ser. 2
,
33
(
1
), pp.
63
72
.10.1299/jsmeb1988.33.1_63
10.
Myong
,
H. K.
,
Kasagi
,
N.
, and
Hirata
,
M.
,
1989
, “
Numerical Prediction of Turbulent Pipe Flow Heat Transfe for Various Prandtl Number Fluids With the Improved k-ε Turbulence Model
,”
JSME Int. J. Ser. 2
,
32
(
4
), pp.
613
622
.10.1299/jsmeb1988.32.4_613
11.
ASME
,
2006
,
Standard for Verification and Validation in Computational Solid Mechanics
,
American Society of Mechanical Engineers
,
New York
, Standard No. V&V
10
2006
.
12.
ASME
,
2009
,
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,
American Society of Mechanical Engineers
,
New York
, Standard No. V&V
20
2009
.
13.
Rumsey
,
C. L.
,
2014
, “
Turbulence Modeling Verification and Validation (Invited)
,”
AIAA
Paper No. 2014-0201.10.2514/6.2014-0201
14.
Han
,
S. H.
,
Choi
,
Y. D.
,
Shin
,
J. K.
,
Kim
,
Y. C.
, and
Kim
,
M. S.
,
2008
, “
Turbulent Heat Transfer of Supercritical Carbon Dioxide in Square Cross-Sectional Duct Flow
,”
J. Mech. Sci. Technol.
,
22
(
12
), pp.
2563
2577
.10.1007/s12206-008-0711-3
15.
Du
,
Z.
,
Lin
,
W.
, and
Gu
,
A.
,
2010
, “
Numerical Investigation of Cooling Heat Transfer to Supercritical CO2 in a Horizontal Circular Tube
,”
J. Supercrit. Fluids
,
55
(
1
), pp.
116
121
.10.1016/j.supflu.2010.05.023
16.
Yang
,
M.
,
2016
, “
Numerical Study on the Heat Transfer of Carbon Dioxide in Horizontal Straight Tubes Under Supercritical Pressure
,”
PLoS One
,
11
(
7
), p.
e0159602
.10.1371/journal.pone.0159602
17.
Pandey
,
S.
,
Laurien
,
E.
, and
Chu
,
X.
,
2017
, “
A Modified Convective Heat Transfer Model for Heated Pipe Flow of Supercritical Carbon Dioxide
,”
Int. J. Therm. Sci.
,
117
, pp.
227
238
.10.1016/j.ijthermalsci.2017.03.021
18.
Qiu
,
Y.
,
Li
,
M.-J.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2017
, “
Thermal Performance Analysis of a Parabolic Trough Solar Collector Using Supercritical CO2 as Heat Transfer Fluid Under Non-Uniform Solar Flux
,”
Appl. Therm. Eng.
,
115
, pp.
1255
1265
.10.1016/j.applthermaleng.2016.09.044
19.
Xiang
,
M.
,
Guo
,
J.
,
Huai
,
X.
, and
Cui
,
X.
,
2017
, “
Thermal Analysis of Supercritical Pressure CO2 in Horizontal Tubes Under Cooling Condition
,”
J. Supercrit. Fluids
,
130
, pp.
389
398
.10.1016/j.supflu.2017.04.009
20.
Chen
,
W.
,
Yang
,
Z.
,
Yang
,
L.
, and
Chyu
,
M. K.
,
2018
, “
Numerical Investigation of Heat Transfer and Flow Characteristics of Supercritical CO2 in u-Duct
,”
Appl. Therm. Eng.
,
144
, pp.
532
539
.10.1016/j.applthermaleng.2018.06.074
21.
Cui
,
X.
,
Guo
,
J.
,
Huai
,
X.
,
Cheng
,
K.
,
Zhang
,
H.
, and
Xiang
,
M.
,
2018
, “
Numerical Study on Novel Airfoil Fins for Printed Circuit Heat Exchanger Using Supercritical CO2
,”
Int. J. Heat Mass Transfer
,
121
, pp.
354
366
.10.1016/j.ijheatmasstransfer.2018.01.015
22.
Han
,
C.-L.
,
Zhang
,
Y.-N.
,
Yu
,
H.
,
Lu
,
Y.-P.
, and
Jiao
,
B.
,
2018
, “
Numerical Analysis on Non-Uniform Flow and Heat Transfer of Supercritical Cryogenic Methane in a Heated Horizontal Circular Tube
,”
J. Supercrit. Fluids
,
138
, pp.
82
91
.10.1016/j.supflu.2018.04.007
23.
Wang
,
X.
,
Xiang
,
M.
,
Huo
,
H.
, and
Liu
,
Q.
,
2018
, “
Numerical Study on Nonuniform Heat Transfer of Supercritical Pressure Carbon Dioxide During Cooling in Horizontal Circular Tube
,”
Appl. Therm. Eng.
,
141
, pp.
775
787
.10.1016/j.applthermaleng.2018.06.019
24.
Cui
,
X.
,
Xiang
,
M.
,
Guo
,
J.
,
Huai
,
X.
,
Zhang
,
H.
, and
Cheng
,
K.
,
2019
, “
Analysis of Coupled Heat Transfer of Supercritical CO2 From the Viewpoint of Distribution Coordination
,”
J. Supercrit. Fluids
,
152
, p.
104560
.10.1016/j.supflu.2019.104560
25.
Cui
,
X.
,
Guo
,
J.
,
Huai
,
X.
,
Zhang
,
H.
,
Cheng
,
K.
, and
Zhou
,
J.
,
2019
, “
Numerical Investigations on Serpentine Channel for Supercritical CO2 Recuperator
,”
Energy
,
172
, pp.
517
530
.10.1016/j.energy.2019.01.148
26.
Diao
,
L.
,
Chen
,
Y.
, and
Li
,
Y.
,
2019
, “
Nonuniform Heat Transfer of Supercritical Pressure Carbon Dioxide Under Turbulent Cooling Condition in Circular Tubes at Various Inclination Angles
,”
Nucl. Eng. Des.
,
352
, p.
110153
.10.1016/j.nucengdes.2019.110153
27.
Li
,
Y.
,
Sun
,
F.
,
Xie
,
G.
,
Sunden
,
B.
, and
Qin
,
J.
,
2019
, “
Numerical Investigation on Flow and Thermal Performance of Supercritical CO2 in Horizontal Cylindrically Concaved Tubes
,”
Appl. Therm. Eng.
,
153
, pp.
655
668
.10.1016/j.applthermaleng.2019.03.034
28.
Li
,
X. L.
,
Tang
,
G. H.
,
Fan
,
Y. H.
,
Yang
,
D. L.
, and
Wang
,
S. Q.
,
2019
, “
Numerical Analysis of Slotted Airfoil Fins for Printed Circuit Heat Exchanger in s-CO2 Brayton Cycle
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
5
(
4
), p.
041303
.10.1115/1.4043098
29.
Pei
,
B.
,
Chen
,
Z.
,
Li
,
F.
, and
Bai
,
B.
,
2019
, “
Flow and Heat Transfer of Supercritical CO2 in the Honeycomb Ultra-Compact Plate Heat Exchanger
,”
J. Supercrit. Fluids
,
148
, pp.
1
8
.10.1016/j.supflu.2019.02.023
30.
Wang
,
J.
,
Guan
,
Z.
,
Gurgenci
,
H.
,
Veeraragavan
,
A.
,
Kang
,
X.
, and
Hooman
,
K.
,
2019
, “
A Computationally Derived Heat Transfer Correlation for in-Tube Cooling Turbulent Supercritical CO2
,”
Int. J. Therm. Sci.
,
138
, pp.
190
205
.10.1016/j.ijthermalsci.2018.12.045
31.
Zhang
,
Y.
,
Peng
,
M.
,
Xia
,
G.
, and
Cong
,
T.
,
2019
, “
Numerical Investigation on Local Heat Transfer Characteristics of s-CO2 in Horizontal Semicircular Microtube
,”
Appl. Therm. Eng.
,
154
, pp.
380
392
.10.1016/j.applthermaleng.2019.03.082
32.
Qin
,
K.
,
Li
,
D.
,
Huang
,
C.
,
Sun
,
Y.
,
Wang
,
J.
, and
Luo
,
K.
,
2020
, “
Numerical Investigation on Heat Transfer Characteristics of Taylor Couette Flows Operating With CO2
,”
Appl. Therm. Eng.
,
165
, p.
114570
.10.1016/j.applthermaleng.2019.114570
33.
Tang
,
L.-H.
,
Pan
,
J.
, and
Sundén
,
B.
,
2021
, “
Investigation on Thermal-Hydraulic Performance in a Printed Circuit Heat Exchanger With Airfoil and Vortex Generator Fins for Supercritical Liquefied Natural Gas
,”
Heat Transfer Eng.
,
42
(
10
), pp.
803
–8
21
.10.1080/01457632.2020.1744244
34.
Kumar
,
N.
, and
Basu
,
D. N.
,
2020
, “
Computational Appraisal of the Thermalhydraulic Characteristics of Supercritical Carbon Dioxide in Heated Mini-Channel for HVAC Applications
,”
IOP Conf. Ser. Earth Environ. Sci.
,
463
, p.
012048
.10.1088/1755-1315/463/1/012048
35.
Abid
,
R.
,
1993
, “
Evaluation of Two-Equation Turbulence Models for Predicting Transitional Flows
,”
Int. J. Eng. Sci.
,
31
(
6
), pp.
831
840
.10.1016/0020-7225(93)90096-D
36.
Abe
,
K.
,
Kondoh
,
T.
, and
Nagano
,
Y.
,
1994
, “
A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows—I. Flow Field Calculations
,”
Int. J. Heat Mass Transfer
,
37
(
1
), pp.
139
151
.10.1016/0017-9310(94)90168-6
37.
Chang
,
K. C.
,
Hsieh
,
W. D.
, and
Chen
,
C. S.
,
1995
, “
A Modified Low-Reynolds-Number Turbulence Model Applicable to Recirculating Flow in Pipe Expansion
,”
ASME J. Fluids Eng.
,
117
(
3
), pp.
417
423
.10.1115/1.2817278
38.
Lam
,
C. K. G.
, and
Bremhorst
,
K.
,
1981
, “
A Modified Form of the k-Epsilon Model for Predicting Wall Turbulence
,”
ASME J. Fluids Eng.
,
103
(
3
), pp.
456
460
.10.1115/1.3240815
39.
Yang
,
Z.
, and
Shih
,
T. H.
,
1993
, “
New Time Scale Based k-Epsilon Model for Near-Wall Turbulence
,”
AIAA J.
,
31
(
7
), pp.
1191
1198
.10.2514/3.11752
40.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
41.
Lemmon
,
E.
,
Bell
,
I.
,
Huber
,
M.
, and
McLinden
,
M.
,
2018
, “Nist Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-Refprop, Version 10.0”.
42.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100 k at Pressures Up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.10.1063/1.555991
You do not currently have access to this content.