Abstract

Truncation error is used to drive mesh adaptation in order to reduce the discretization error in solutions to a variety of 1D and 2D flow problems. The adaptation is performed using r-adaptation to move the mesh nodes in the domain in an attempt to reduce the truncation error since it is the local source of discretization error. Here, we present a new set of r-adaptation methods called mesh optimization along with three different ways of performing this type of adaptation. Each of these techniques uses a finite difference gradient-based local optimization technique with different sets of design variables to create a mesh that minimizes a functional based on truncation error. These new truncation error based mesh optimization techniques are compared to a more common truncation error based mesh equidistribution technique. Some observations on the performance and behavior of the different adaptation methods and best practices for their use are presented. All of the optimization methods are shown to reduce the truncation error one or two orders of magnitude and the discretization error by roughly one order of magnitude for the 1D problems tested. In two dimensions, the optimization-based adaptation methods are able to reduce the discretization error by up to a factor of seven. Mesh equidistribution achieved similar levels of improvement for much less cost compared to the mesh optimization techniques.

References

1.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
.
2.
Hawken
,
D.
,
Gottlieb
,
J.
, and
Hansen
,
J.
,
1991
, “
Review of Some Adaptive Node-Movement Techniques in Finite-Element and Finite Difference Solutions of Partial Differential Equations
,”
J. Comput. Phys.
,
95
(
2
), pp.
254
302
.10.1016/0021-9991(91)90277-R
3.
Warren
,
G. P.
,
Anderson
,
W. K.
,
Thomas
,
J. L.
, and
Krist
,
S. L.
,
1991
, “
Grid Convergence for Adaptive Methods
,”
AIAA
Paper No. 1991-1592. 10.2514/6.1991-1592
4.
Venditti
,
D. A.
, and
Darmofal
,
D. L.
,
2002
, “
Grid Adaptation for Functional Outputs: Application to Two-Dimensional Inviscid Flows
,”
J. Comput. Phys.
,
176
(
1
), pp.
40
69
.10.1006/jcph.2001.6967
5.
Dwight
,
R. P.
,
2008
, “
Heuristic a Posteriori Estimation of Error Due to Dissipation in Finite Volume Schemes and Application to Mesh Adaptation
,”
J. Comput. Phys.
,
227
(
5
), pp.
2845
2863
.10.1016/j.jcp.2007.11.020
6.
Laflin
,
K. R.
,
1997
, “
Solver-Independent r-Refinement Adaptation for Dynamic Numerical Simulations
,”
Ph.D. thesis
,
North Carolina State University
,
Raleigh, NC
.https://ui.adsabs.harvard.edu/abs/1997PhDT.......259L/abstract
7.
McRae
,
D. S.
,
2000
, “
r-Refinement Grid Adaptation Algorithms and Issues
,”
Comput. Methods Appl. Mech. Eng.
,
189
(
4
), pp.
1161
1182
.10.1016/S0045-7825(99)00372-2
8.
Zhang
,
X. D.
,
Trépanier
,
J.-Y.
, and
Camarero
,
R.
,
2000
, “
A Posteriori Error Estimation for Finite Volume Solutions of Hyperbolic Conservation Laws
,”
Comput. Methods Appl. Mech. Eng.
,
185
(
1
), pp.
1
19
.10.1016/S0045-7825(99)00099-7
9.
Gu
,
X.
, and
Shih
,
T.
,
2001
, “
Differentiating Between Source and Location of Error for Solution-Adaptive Mesh Refinement
,”
AIAA
Paper No. 2001-2660.10.2514/6.2001-2660
10.
Roy
,
C. J.
,
2009
, “
Strategies for Driving Mesh Adaptation in CFD (Invited)
,”
AIAA
Paper No. 2009-1302.10.2514/6.2009-1302
11.
Choudhary
,
A.
, and
Roy
,
C.
,
2011
, “
Efficient Residual-Based Mesh Adaption for 1D and 2D CFD Applications
,”
AIAA
Paper No. 2011-214.10.2514/6.2011-214
12.
Venditti
,
D. A.
, and
Darmofal
,
D. L.
,
2000
, “
Adjoint Error Estimation and Grid Adaptation for Functional Outputs: Application to Quasi-One-Dimensional Flow
,”
J. Comput. Phys.
,
164
(
1
), pp.
204
227
.10.1006/jcph.2000.6600
13.
Nguyen-Dinh
,
M.
,
2014
, “
Qualification of Numerical Simulations by Anisotropic Mesh Adaptation
,” Ph.D. thesis,
Université Nice Sophia Antipolis
,
Nice, France
.
14.
Hartmann
,
R.
,
2008
, “
Multitarget Error Estimation and Adaptivity in Aerodynamic Flow Simulations
,”
SIAM J. Sci. Comput.
,
31
(
1
), pp.
708
731
.10.1137/070710962
15.
Roy
,
C.
,
2010
, “
Review of Discretization Error Estimators in Scientific Computing
,”
AIAA
Paper No. 2010-126.10.2514/6.2010-126
16.
Phillips
,
T. S.
,
Derlaga
,
J. M.
,
Roy
,
C. J.
, and
Borggaard
,
J.
,
2013
, “
Finite Volume Solution Reconstruction Methods for Truncation Error Estimation
,”
AIAA
Paper No. 2013-3090.10.2514/6.2013-3090
17.
Lee
,
D.
, and
Tsuei
,
Y.
,
1992
, “
A Formula for Estimation of Truncation Errors of Convection Terms in a Curvilinear Coordinate System
,”
J. Comput. Phys.
,
98
(
1
), pp.
90
100
.10.1016/0021-9991(92)90175-X
18.
Yamaleev
,
N. K.
,
2001
, “
Minimization of the Truncation Error by Grid Adaptation
,”
J. Comput. Phys.
,
170
(
2
), pp.
459
497
.10.1006/jcph.2001.6745
19.
Alyanak
,
E. J.
,
Roy
,
C. J.
, and
Choudhary
,
A.
,
2011
, “
Investigation of Optimal Grid Distributions for Burgers' Equation
,”
AIAA
Paper No. 2011-888.10.2514/6.2011-888
20.
Phillips
,
T.
,
Roy
,
C.
,
Alyanak
,
E.
, and
Gooch
,
C. O.
,
2012
, “
Optimal Mesh Adaption for Burgers' Equation
,”
AIAA
Paper No. 2012-2710.10.2514/6.2012-2710
21.
Choudhary
,
A.
, and
Roy
,
C. J.
,
2013
, “
Structured Mesh r-Refinement Using Truncation Error Equidistribution for 1D and 2D Euler Problems
,”
AIAA
Paper No. 2013-2444.10.2514/6.2013-2444
22.
Tyson
,
W. C.
,
Derlaga
,
J. M.
,
Choudhary
,
A.
, and
Roy
,
C. J.
,
2015
, “
Comparison of r-Adaptation Techniques for 2-D CFD Applications
,”
AIAA
Paper No. 2015-2611.10.2514/6.2015-2611
23.
Fraysse
,
F.
,
Valero
,
E.
, and
Ponsín
,
J.
,
2012
, “
Comparison of Mesh Adaptation Using the Adjoint Methodology and Truncation Error Estimates
,”
AIAA J.
,
50
(
9
), pp.
1920
1932
.10.2514/1.J051450
24.
Tyson
,
W. C.
,
2018
, “
On Numerical Error Estimation for The Finite Volume Method With An Application to CFD
,” Ph.D. thesis,
Virginia Tech
,
Blacksburg, VA
.
25.
Anderson
,
D. A.
,
1990
, “
Grid Cell Volume Control With an Adaptive Grid Generator
,”
Appl. Math. Comput.
,
35
(
3
), pp.
209
217
.10.1016/0096-3003(90)90042-2
26.
Jackson
,
C. W.
, and
Roy
,
C. J.
,
2015
, “
A Multi-Mesh CFD Technique for Adaptive Mesh Solutions
,”
AIAA
Paper No. 2015-1958.10.2514/6.2015-1958
27.
Jackson
,
C. W.
,
Wang
,
H.
,
Roy
,
C. J.
, and
Schrock
,
C. R.
,
2016
, “
Optimal Mesh Adaptation for 1D Euler Equation With Multi-Mesh Applications
,”
AIAA
Paper No. 2016-3808.10.2514/6.2016-3808
28.
Jackson
,
C. W.
,
Roy
,
C. J.
, and
Schrock
,
C. R.
,
2017
, “
Optimal Mesh Adaptation for 2D Euler Equations
,”
AIAA
Paper No. 2017-3103.10.2514/6.2017-3103
29.
Adams
,
B. M.
,
Ebeida
,
M. S.
,
Eldred
,
M. S.
,
Geraci
,
G.
,
Jakeman
,
J. D.
,
Maupin
,
K. A.
,
Monschke
,
J. A.
,
Swiler
,
L. P.
,
Stephens
,
J. A.
,
Vigil
,
D. M.
,
Wildey
,
T. M.
,
Bohnhoff
,
W. J.
,
Dalbey
,
K. R.
,
Eddy
,
J. P.
,
Hooper
,
R. W.
,
Hu
,
K. T.
,
Hough
,
P. D.
,
Ridgway
,
E. M.
, and
Rushdi
,
A.
,
2014
, “Dakota, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Senseitivity Analysis: Version 6.5 User's Manual,” Sandia National Laboratories, Albuquerque, NM, Report No.
2014
4633
.
30.
Thomas
,
L.
,
1949
,
Elliptic Problems in Linear Difference Equations Over a Network. Watson Science Computer Lab Report
,
Columbia University
,
New York
.
31.
Nakahashi
,
K.
, and
Deiwert
,
G. S.
,
1986
, “
Three-Dimensional Adaptive Grid Method
,”
AIAA J.
,
24
(
6
), pp.
948
954
.10.2514/3.9369
32.
Huang
,
W.
, and
Russell
,
R. D.
,
2011
,
Adaptive Moving Mesh Methods of Applied Mathematical Sciences
, Vol.
174
,
Springer
,
New York
.
33.
Junkins
,
J. L.
,
Miller
,
G. W.
, and
Jancaitis
,
J. R.
,
1973
, “
A Weighting Function Approach to Modeling of Irregular Surfaces
,”
J. Geophys. Res.
,
78
(
11
), pp.
1794
1803
.10.1029/JB078i011p01794
34.
Jackson
,
C. W.
, and
Roy
,
C. J.
,
2019
, “
Performance of r-Adaptation Using Truncation Error-Based Equidistribution
,”
ASME J. Verif., Validation Uncertainty Quantif.
,
4
(
4
), p. 041001.https://asmedigitalcollection.asme.org/verification/article-abstract/4/4/041001/1069505/Performance-of-r-Adaptation-Using-Truncation-Error?redirectedFrom=fulltext
35.
Jackson
,
C. W.
,
2019
, “
Truncation Error Based Mesh Adaptation and Its Application to Multi-Mesh CFD
,”
Ph.D. thesis
,
Virginia Tech
,
Blacksburg, VA
.https://vtechworks.lib.vt.edu/handle/10919/91890
36.
van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov's Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.10.1016/0021-9991(79)90145-1
37.
Ferziger
,
J. H.
, and
Perić
,
M.
,
2002
,
Computational Methods for Fluid Dynamics
, 3rd ed.,
Springer
,
New York
.
38.
van Leer
,
B.
,
1982
, “
Flux-Vector Splitting for the Euler Equations
,”
Eighth International Conference on Numerical Methods in Fluid Dynamics
(Lecture Notes in Physics, Vol.
170
)
E.
Krause
, ed.,
Springer
,
Berlin
, pp.
507
512
.
39.
Liepmann
,
H. W.
, and
Roshko
,
A.
,
2013
,
Elements of Gas Dynamics
,
Guilford Publications
,
New York
.
40.
Derlaga
,
J. M.
,
Phillips
,
T.
, and
Roy
,
C. J.
,
2013
, “
SENSEI Computational Fluid Dynamics Code: A Case Study in Modern Fortran Software Development
,”
AIAA
Paper No. 2013-2450.10.2514/6.2013-2450
41.
van Albada
,
G. D.
,
van Leer
,
B.
, and
Roberts
,
W. W.
, Jr.
,
1982
, “
A Comparative Study of Computational Methods in Cosmic Gas Dynamics
,”
Astron. Astrophys.
,
108
, pp.
76
84
.10.1007/978-3-642-60543-7_6
42.
Roe
,
P.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.10.1016/0021-9991(81)90128-5
43.
Chen
,
Y.
, and
Gupta
,
M. R.
,
2010
, “EM Demystified: An Expectation-Maximization Tutorial,” University of Washington, Seattle, WA, UWEE Technical Report No.
2010
0002
.
You do not currently have access to this content.