Abstract

When establishing the pedigree of a simulation tool, code verification is used to ensure that the implemented numerical algorithm is a faithful representation of its underlying mathematical model. During this process, numerical results on various meshes are systematically compared to a reference analytic solution. The selection of analytic solutions can be a laborious process, as it is difficult to establish adequate code confidence without performing redundant work. Here, we address this issue by applying a physics-based process that establishes a set of reference problems. In this process, code simulation options are categorized and systematically tested, which ensures that gaps in testing are easily identified and addressed. The resulting problems are primarily intended for code verification analysis but may also be useful for comparison to other simulation codes, troubleshooting activities, or training exercises. The process is used to select fifteen code verification problems relevant for the one-dimensional steady-state heat conduction equation. These problems are applicable to a wide variety of simulation tools, but, in this work, a demonstration is performed using the finite element-based nuclear fuel performance code BISON. Convergence to the analytic solution at the theoretical rate is quantified for a selection of the problems, which establishes a baseline pedigree for the code. Not only can this standard set of conduction solutions be used for verification of other codes, but also the physics-based process for selecting problems can be utilized to quantify and expand testing for any simulation tool.

References

1.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
, 1st ed,
Cambridge University Press
,
Cambridge, UK
, p.
11
.
2.
Salari
,
K.
, and
Knupp
,
P.
,
2000
, “
Code Verification by the Method of Manufactured Solutions
,” SNL, Albuquerque, NM, Report No. SAND2000-1444.
3.
Oberkampf
,
W. L.
,
Pilch
,
M.
, and
Trucano
,
T. G.
,
2007
, “
Predictive Capability Maturity Model for Computational Modeling and Simulation
,” SNL, Albuquerque, NM, Report No. SAND2007-5948.
4.
Roache
,
P. J.
,
1998
,
Verification and Validation in Computational Science and Engineering
,
Hermosa Publishing
,
Albuquerque, NM
.
5.
Williamson
,
R. L.
,
Hales
,
J. D.
,
Novascone
,
S. R.
,
Tonks
,
M. R.
,
Gaston
,
D. R.
,
Permann
,
C. J.
,
Andrs
,
D.
, and
Martineau
,
R. C.
,
2012
, “
Multidimensional Multiphysics Simulation of Nuclear Fuel Behavior
,”
J. Nucl. Mater.
,
423
(
1–3
), pp.
149
163
.10.1016/j.jnucmat.2012.01.012
6.
Hales
,
J. D.
,
Williamson
,
R. L.
,
Novascone
,
S. R.
,
Pastore
,
G.
,
Spencer
,
B. W.
,
Stafford
,
D.S.
,
Gamble
,
K. A.
,
Perez
,
D. M.
,
Gardner
,
R. J.
,
Liu
,
W.
,
Galloway
,
J.
,
Matthews
,
C.
,
Unal
,
C.
, and
Carlson
,
N.
,
2016
,
BISON Theory Manual the Equations Behind Nuclear Fuel Analysis
,
Idaho National Laboratory
,
Idaho Falls, ID
.
7.
Williamson
,
R. L.
,
Hales
,
J. D.
,
Novascone
,
S. R.
,
Pastore
,
G.
,
Gamble
,
K. A.
,
Spencer
,
B. W.
,
Wiang
,
J.
,
Pitts
,
S. A.
,
Casagranda
,
A.
,
Schwen
,
D.
,
Zabriskie
,
A. X.
,
Toptan
,
A.
,
Gardner
,
R.
,
Matthews
,
C.
,
Liu
,
W.
, and
Chen
,
H.
,
2020
, “
BISON: A Flexible Code for Advanced Simulation of the Performance of Multiple Nuclear Fuel Forms
,”
Nucl. Technol
.
8.
Permann
,
C. J.
,
Gaston
,
D. R.
,
Andrš
,
D.
,
Carlsen
,
R. W.
,
Kong
,
F.
,
Lindsay
,
A. D.
,
Miller
,
J. M.
,
Peterson
,
J. W.
,
Slaughter
,
A. E.
,
Stogner
,
R. H.
, and
Martineau
,
R. C.
,
2020
, “
MOOSE: Enabling Massively Parallel Multiphysics Simulation
,”
SoftwareX
,
11
, p.
100430
.10.1016/j.softx.2020.100430
9.
Toptan
,
A.
,
Porter
,
N. W.
,
Hales
,
J. D.
,
Williamson
,
R. L.
, and
Pilch
,
M.
,
2020
, “
FY20 Verification of BISON Using Analytic and Manufactured Solutions
,” Consortium for Advanced Simulation of LWRs (CASL), Albuquerque, NM, Report Nos. CASL-U-2020-1939-000 and SAND2020-3887R.
10.
McHale
,
M. P.
,
Friedman
,
J. R.
, and
Karian
,
J. H.
,
2009
, “
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,” American Society of Mechanical Engineers (ASME), New York, Standard No. ASME V&V 20–2009.
11.
VanSant
,
J. H.
,
1983
, “
Conduction Heat Transfer Solutions
,” Lawrence Livermore National Laboratory, Livermore, CA, Report Nos. UCRL-52863-Rev.l and DE87 012387.
12.
Cole
,
K. D.
,
Beck
,
J. V.
,
Woodbury
,
K. A.
, and
de Monte
,
F.
,
2014
, “
Intrinsic Verification and a Heat Conduction Database
,”
Int. J. Therm. Sci.
,
78
, pp.
36
47
.10.1016/j.ijthermalsci.2013.11.002
13.
University of Nebraska-Lincoln
,
2019
, “
Exact Analytical Conduction Toolbox (EXACT)
,” University of Nebraska-Lincoln, accessed June 2020, https://exact.unl.edu/exact/home/home.php
14.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
, 2nd ed.,
Clarendon Press
,
Oxford, UK
.
15.
Jakob
,
M.
,
1949
,
Heat Transfer
, Vol.
1
,
Wiley
,
New York
.
16.
Hahn
,
D. W.
, and
Ozisik
,
M. N.
,
2012
,
Heat Conduction
, 3rd ed.,
Wiley
,
Hoboken, NJ
.
17.
Beck
,
J. V.
,
Haji-Sheikh
,
A.
,
Amos
,
D. E.
, and
Yen
,
D.
,
2004
, “
Verification Solution for Partial Heating of Rectangular Solids
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4243
4255
.10.1016/j.ijheatmasstransfer.2004.04.021
18.
McMasters
,
R. L.
,
Zhou
,
Z.
,
Dowding
,
K. J.
,
Somerton
,
C.
, and
Beck
,
J. V.
,
2002
, “
Exact Solution for Nonlinear Thermal Diffusion and Its Use for Verification
,”
J. Thermophys. Heat Transfer
,
16
(
3
), pp.
366
372
.10.2514/2.6713
19.
McMasters
,
R. L.
,
Dowding
,
K. J.
,
Beck
,
J. V.
, and
Yen
,
D. H. Y.
,
2002
, “
Methodology to Generate Accurate Solutions for Verification in Transient Three-Dimensional Heat Conduction
,”
Numer. Heat Transfer, Part B
,
41
(
6
), pp.
521
541
.10.1080/10407790190053761
20.
McMasters
,
R.
,
de Monte
,
F.
, and
Beck
,
J. V.
,
2019
, “
Generalized Solution for Two-Dimensional Transient Heat Conduction Problems With Partial Heating Near a corner
,”
ASME J. Heat Transfer
,
141
(
7
), pp.
071301
071308
.10.1115/1.4043568
21.
McMasters
,
R.
,
de Monte
,
F.
, and
Beck
,
J. V.
,
2020
, “
Generalized Solution for Rectangular Three-Dimensional Transient Heat Conduction Problems With Partial Heating
,”
J. Thermophys. Heat Transfer
,
34
(
3
), pp.
516
521
.10.2514/1.T5888
22.
Hirt
,
C. W.
,
1968
, “
Heuristic Stability Theory for Finite Difference Equations
,”
J. Comput. Phys.
,
2
(
4
), pp.
339
355
.10.1016/0021-9991(68)90041-7
23.
Grinstein
,
F. F.
,
Margolin
,
L. G.
, and
Rider
,
W. J.
,
2007
,
Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
24.
Porter
,
N. W.
,
Salko
,
R. K.
, and
Pilch
,
M.
,
2020
, “
FY20 Improvements to CTF Code Verification and Unit Testing
,” CASL, Albuquerque, NM, Report Nos. SAND2020-2719R and CASL-U-2020-1938-000.
25.
Pfefferer
,
J.
, and
Winkler
,
M.
,
2019
, “
Finite Element Error Estimates for Normal Derivatives on Boundary Concentrated Meshes
,”
SIAM J. Numer. Anal.
,
57
(
5
), pp.
2043
2073
.10.1137/18M1181341
26.
Banks
,
J. W.
,
Aslam
,
T.
, and
Rider
,
W. J.
,
2008
, “
On Sub-Linear Convergence for Linearly Degenerate Waves in Capturing Schemes
,”
J. Comput. Phys.
,
227
(
14
), pp.
6985
7002
.10.1016/j.jcp.2008.04.002
27.
Kamm
,
J.
,
Rider
,
W.
, and
Brock
,
J.
,
2003
, “
Combined Space and Time Convergence Analysis of a Compressible Flow Algorithm
,”
AIAA
Paper No. 4041.10.2514/6.2003-4241
28.
Burnett
,
D. S.
,
1987
,
Finite Element Analysis From Concepts to Applications
,
Addison-Wesley Publishing Company
,
Reading, MA
.
29.
Ross
,
A. M.
, and
Stoute
,
R. L.
,
1962
, “
Heat transfer Coefficient Between UO2 and Zircaloy-2
,” Atomic Energy of Canada Limited, Report No. AECL-1552.
30.
Lanning
,
D. D.
, and
Hann
,
C. R.
,
1975
, “
Review of methods Applicable to the Calculation of Gap Conductance in Zircaloy-clad UO2 Fuel Rods
,” Pacific Northwest National Laboratory, Richland, WA, Report No. BWNL-1894, UC-78B.
31.
Allison
,
C. M.
,
1993
, “
SCDAP/RELAP5/MOD3.1 code Manual, Volume IV: MATPRO–A Library of Materials Properties for Light-Water-Reactor Accident Analysis
,” Idaho National Engineering Laboratory, Washington, DC, Report Nos. NUREG/CR-6150 and EGG-2720.
32.
Toptan
,
A.
,
Salko
,
R. K.
,
Avramova
,
M. N.
,
Clarno
,
K.
, and
Kropaczek
,
D. J.
,
2019
, “
A New Fuel Modeling Capability, CTFFuel, With a Case Study on the Fuel Thermal Conductivity Degradation
,”
J. Nucl. Eng. Des.
,
341
, pp.
248
258
.10.1016/j.nucengdes.2018.11.010
33.
Toptan
,
A.
,
Kropaczek
,
D. J.
, and
Avramova
,
M. N.
,
2019
, “
Gap Conductance Modeling I: Theoretical Considerations for Single- and Multi-Component Gases in Curvilinear Coordinates
,”
Nucl. Eng. Des.
,
353
, p.
110283
.10.1016/j.nucengdes.2019.110283
34.
Toptan
,
A.
,
Kropaczek
,
D. J.
, and
Avramova
,
M. N.
,
2019
, “
Gap Conductance Modeling II: Optimized Model for UO2-Zircaloy Interfaces
,”
Nucl. Eng. Des.
,
355
, p.
110289
.10.1016/j.nucengdes.2019.110289
35.
Toptan
,
A.
,
Hales
,
J. D.
,
Williamson
,
R. L.
,
Novascone
,
S. R.
,
Pastore
,
G.
, and
Kropaczek
,
D. J.
,
2020
, “
Modeling of Gap Conductance for LWR Fuel Rods Applied in the BISON Code
,”
J. Nucl. Sci. Technol.
,
57
(
8
), pp.
963
974
.10.1080/00223131.2020.1740808
36.
Beck
,
J. V.
, and
Litkouhi
,
B.
,
1985
, Heat Conduction Numbering System,
ASME
Paper No. 85-WA/HT-63.10.1115/85-WA/HT-63
37.
Cole
,
K. D.
,
2011
,
Heat Conduction Using Green's Functions
,
CRC Press
,
Boca Raton, FL
.
38.
Arpaci
,
V. S.
,
1966
,
Conduction Heat Transfer
,
Addison-Wesley Publishing Company
,
Reading, MA
.
39.
Scheider
,
P. J.
,
1955
,
Conduction Heat Transfer
,
Addison-Wesley Publishing Company
,
Cambridge, MA
.
40.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
1960
,
Transport Phenomena
,
Wiley
,
New York
.
41.
Nuclear Regulatory Commission, “
10 CFR Part 50: Domestic Licensing of Production and Utilization Facilities
,” Nuclear Regulatory Commission, Washington, DC, accessed Nov. 16, 2020, https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/
42.
U. S. Nuclear Regulatory Commission
,
2015
, “
TRACE V5.0 Theory Manual: Field Equations, Solution Methods, and Physical Models
,” U. S. Nuclear Regulatory Commission, Washington, DC.
43.
Salko
,
R.
,
2019
, “
CTF 4.0 Theory Manual
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No. ORNL/TM-2019/1145.
44.
Porter
,
N.
,
Mousseau
,
V.
, and
Avramova
,
M.
,
2019
, “
CTF-R: A Novel Residual-Based Thermal Hydraulic Solver
,”
Nucl. Eng. Des.
,
348
, pp.
37
45
.10.1016/j.nucengdes.2019.04.006
45.
Electric Power Research Institute
,
2004
, “Fuel Analysis and Licensing Code: FALCON MOD01: Volume 1: Theoretical and Numerical Bases,”
Electric Power Research Institute
,
Washington, DC
.
46.
Geelhood
,
K. J.
,
Luscher
,
W. G.
,
Raynaud
,
P. A.
, and
Porter
,
I. E.
,
2015
, “
FRAPCON-4.0: A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup
,” PNNL, Richland, WA, Report No. PNNL-19418.
47.
Geelhood
,
K. J.
,
Luscher
,
W. G.
,
Raynaud
,
P. A.
, and
Porter
,
I. E.
,
2016
, “
Fraptran-2.0: A Computer Code for the Transient Analysis of Oxide Fuel Rods
,” Pacific Northwest National Laboratory, Richland, WA, Report No. PNNL-19400.
48.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Zhu
,
J. Z.
,
2013
,
The Finite Element Method Its Basis & Fundamentals
,
Elsevier
,
New York
.
49.
Oliveira
,
E. R. D. A. E.
,
1968
, “
Theoretical Foundations of the Finite Element Method
,”
Int. J. Solids Struct.
,
4
(
10
), pp.
929
952
.10.1016/0020-7683(68)90014-0
50.
Aziz
,
A. K.
,
1972
,
The Mathematical Foundations of the Finite Element Method With Applications to Partial Differential Equations
,
Academic Press
,
New York
.
51.
Oden
,
J. T.
, and
Reddy
,
J. N.
,
1976
,
An Introduction to the Mathematical Theory of Finite Elements
,
Wiley
,
New York
.
52.
Babuska
,
I.
, and
Szabo
,
B.
,
1982
, “
On the Rates of Convergence of the Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
18
(
3
), pp.
323
341
.10.1002/nme.1620180302
53.
Babuska
,
I.
,
Szabo
,
B. A.
, and
Katz
,
I. N.
,
1981
, “
The p-version of the Finite Element Method
,”
SIAM J. Numer. Anal.
,
18
(
3
), pp.
515
545
.10.1137/0718033
54.
Wolfram Research,
2020
, “Mathematica, Version 10.3,”
Wolfram Research
,
Champaign, IL
.
You do not currently have access to this content.