Abstract

Soil drilling operation has become one of the most important interests to researchers due to its many applications in engineering systems. Auger drilling is one of the ideal methods in many applications such as pile foundation engineering, sampling test for geological, and space sciences. However, the dominant factor in determination of drilling parameters drilling operations experience. Therefore, soil-drilling process using auger drilling is studied to obtain the controlling parameters and to optimize these parameters to improve drilling performance which enables proper selection of machine for a required job. One of the main challenges that faces researchers during using of modeling techniques to define the soil drilling problem is the complex nonlinear behavior of the drilled medium itself due to its discontinuity and heterogeneous formation. This article presents two models that can be used to predict the total resistive forces which affect the auger during soil drilling operations. The first proposed model discusses the problem analytically in a way that depends on empirical data that can be collected from previous experience. The second model discusses the problem numerically with less depending on empirical experienced data. The analytical model is developed using matlab® interface, while the numerical model is developed using discrete element method (DEM) using edem software. A simplified auger drilling machine is built in the soil–tool interaction laboratory, Military Technical College to obtain experimental results that can be used to verify the presented models. Data acquisition measuring system is established to obtain experimental results using a labview® software which enables displaying and recording the measured data collected mainly from transducers planted in the test rig. Both analytical and numerical model results are compared to experimental values to aid in developing the presented parametric study that can be used to define the working parameters during drilling operations in different types of soils. Uncertainty calculations have been applied to ensure the reliability of the models. The combined calculated uncertainty leads to the level of confidence of about 95%.

References

References
1.
Tan
,
S. C.
,
Duan
,
L. C.
,
Tan
,
S. E.
, and
Shi
,
H.
,
2011
, “
Study on Critical Drilling Parameters for Auger Drilling
,”
Adv. Mater. Res.
,
243–249
, pp.
3331
3340
.10.4028/www.scientific.net/AMR.243-249.3331
2.
Zacny
,
K.
,
Bar-Cohen
,
Y.
,
Brennan
,
M.
,
Briggs
,
G.
,
Cooper
,
G.
,
Davis
,
K.
,
Dolgin
,
B.
,
Glaser
,
D.
,
Glass
,
B.
,
Gorevan
,
S.
,
Guerrero
,
J.
,
McKay
,
C.
,
Paulsen
,
G.
,
Stanley
,
S.
, and
Stoker
,
C.
,
2008
, “
Drilling Systems for Extraterrestrial Subsurface Exploration
,”
Astrobiology
,
8
(
3
), pp.
665
706
.10.1089/ast.2007.0179
3.
Peurifoy
,
R. L.
, and
Ledbetter
,
W. B.
,
2003
,
Construction Planning, Equipment, and Methods (McGraw-Hill Series in Civil Engineering)
,
G. Tchobanoglous and R. E. Levitt, eds., McGraw-Hill, New York
.
4.
Team
,
E.
,
2017
, “
Optimizing Heavy Equipment Design for Handling Bulk Materials
,” Edinburgh, UK, accessed May 15, 2020, www.edemsimulation.com
5.
Brown, D. A., Dapp, S. D., Thompson, W. R., and Lazarte, C. A., 2007, “
Design and Construction of Continuous Flight Auger Piles
,”
Geotech. Eng. Circ.
,
8
.
6.
Hosny
,
H. E.
,
Ibrahim
,
A. H.
, and
Fraig
,
R. F.
,
2016
, “
Cost Analysis of Continuous Flight Auger Piles Construction in Egypt
,”
Alexandria Eng. J.
,
55
(
3
), pp.
2709
2720
.10.1016/j.aej.2016.05.021
7.
Specialists FoP
,
2014
, “
CFA Piling: Preventing Ground & Rig Instability Through Over-Flighting
,” p.
8
.
8.
Fayek
,
A. R.
,
Dissanayake
,
M.
, and
Campero
,
O.
,
2004
, “
Developing a Standard Methodology for Measuring and Classifying Construction Field Rework
,”
Can. J. Civ. Eng.
,
31
(
6
), pp.
1077
1089
.10.1139/l04-068
9.
Tamás
,
K.
,
Jóri
,
I. J.
, and
Mouazen
,
A. M.
,
2013
, “
Modelling Soil–Sweep Interaction with Discrete Element Method
,”
Soil Tillage Res.
,
134
, pp.
223
231
.10.1016/j.still.2013.09.001
10.
Rojek
,
J.
,
Oñate
,
E.
,
Labra
,
C.
, and
Kargl
,
H.
,
2011
, “
Discrete Element Simulation of Rock Cutting
,”
Int. J. Rock Mech. Min. Sci.
,
48
(
6
), pp.
996
1010
.10.1016/j.ijrmms.2011.06.003
11.
Coetzee
,
C.
, and
Els
,
D.
,
2009
, “
Calibration of Granular Material Parameters for DEM Modelling and Numerical Verification by Blade–Granular Material Interaction
,”
J. Terramech.
,
46
(
1
), pp.
15
26
.10.1016/j.jterra.2008.12.004
12.
Ucgul
,
M.
,
Saunders
,
C.
, and
Fielke
,
J. M.
,
2017
, “
Discrete Element Modelling of Top Soil Burial Using a Full Scale Mouldboard Plough Under Field Conditions
,”
Biosyst. Eng.
,
160
, pp.
140
153
.10.1016/j.biosystemseng.2017.06.008
13.
Ucgul
,
M.
,
Saunders
,
C.
, and
Fielke
,
J. M.
,
2018
, “
Comparison of the Discrete Element and Finite Element Methods to Model the Interaction of Soil and Tool Cutting Edge
,”
Biosyst. Eng.
,
169
, pp.
199
208
.10.1016/j.biosystemseng.2018.03.003
14.
Bharadwaj
,
R.
,
2012
, “
Using DEM to Solve Bulk Material Handling Problems
,”
Chem. Eng. Prog.
,
108
(
9
), pp.
54
58
.
15.
Tagar
,
A. A.
,
Changying
,
J.
,
Adamowski
,
J.
,
Malard
,
J.
,
Qi
,
C. S.
,
Qishuo
,
D.
, and
Abbasi
,
N. A.
,
2015
, “
Finite Element Simulation of Soil Failure Patterns Under Soil Bin and Field Testing Conditions
,”
Soil Tillage Res.
,
145
, pp.
157
170
.10.1016/j.still.2014.09.006
16.
Zhao
,
C.
, and
Zang
,
M.
,
2014
, “
Analysis of Rigid Tire Traction Performance on a Sandy Soil by 3D Finite Element–Discrete Element Method
,”
J. Terramech.
,
55
, pp.
29
37
.10.1016/j.jterra.2014.05.005
17.
Rojek
,
J.
,
2014
, “
Discrete Element Thermomechanical Modelling of Rock Cutting With Valuation of Tool Wear
,”
Comput. Particle Mech.
,
1
(
1
), pp.
71
84
.10.1007/s40571-014-0008-5
18.
Pichler, T., Pucker, T., Hamann, T., Henke, S., and Qiu, G.,
2012
, “
High-Performance Abaqus Simulations in Soil Mechanics Reloaded—Chances and Frontiers
,”
2012 SIMULIA Community Conference, pp. 1–30
.
19.
Abo-Elnor
,
M.
,
Hamilton
,
R.
, and
Boyle
,
J.
,
2003
, “
3D Dynamic Analysis of Soil–Tool Interaction Using the Finite Element Method
,”
J. Terramech.
,
40
(
1
), pp.
51
62
.10.1016/j.jterra.2003.09.002
20.
Abo-Elnor
,
M.
,
Hamilton
,
R.
, and
Boyle
,
J.
,
2004
, “
Simulation of Soil–Blade Interaction for Sandy Soil Using Advanced 3D Finite Element Analysis
,”
Soil Tillage Res.
,
75
(
1
), pp.
61
73
.10.1016/S0167-1987(03)00156-9
21.
Karmakar
,
S.
,
Kushwaha
,
R.
, and
Lague
,
C.
,
2007
, “
Numerical Modelling of Soil Stress and Pressure Distribution on a Flat Tillage Tool Using Computational Fluid Dynamics
,”
Biosyst. Eng.
,
97
(
3
), pp.
407
414
.10.1016/j.biosystemseng.2007.02.008
22.
Zeng
,
Z.
,
Ma
,
X.
,
Chen
,
Y.
, and
Qi
,
L.
,
2020
, “
Modelling Residue Incorporation of Selected Chisel Ploughing Tools Using the Discrete Element Method (DEM)
,”
Soil Tillage Res.
,
197
, p.
104505
.10.1016/j.still.2019.104505
23.
Shen
,
W.
,
Zhao
,
T.
,
Dai
,
F.
,
Jiang
,
M.
, and
Zhou
,
G. G. D.
,
2019
, “
DEM Analyses of Rock Block Shape Effect on the Response of Rockfall Impact Against a Soil Buffering Layer
,”
Eng. Geol.
,
249
, pp.
60
70
.10.1016/j.enggeo.2018.12.011
24.
Yinyan
,
S.
,
Man
,
C.
,
Xiaochan
,
W.
,
Odhiambo
,
M. O.
, and
Weimin
,
D.
,
2018
, “
Numerical Simulation of Spreading Performance and Distribution Pattern of Centrifugal Variable-Rate Fertilizer Applicator Based on DEM Software
,”
Comput. Electron. Agric.
,
144
, pp.
249
259
.10.1016/j.compag.2017.12.015
25.
Talalay
,
P.
,
2003
, “
Power Consumption of Deep Ice Electromechanical Drills
,”
Cold Reg. Sci. Technol.
,
37
(
1
), pp.
69
79
.10.1016/S0165-232X(03)00036-3
26.
Mabrouk
,
M. H.
,
2015
, “
Design of Training Aid for Down the Hole Drilling Rig Equipment
,”
Int. J. Eng. Res. Technol. (IJERT)
,
4
(
12
), pp.
439
445
.
27.
Horabik
,
J.
, and
Molenda
,
M.
,
2016
, “
Parameters and Contact Models for DEM Simulations of Agricultural Granular Materials: A Review
,”
Biosyst. Eng.
,
147
, pp.
206
225
.10.1016/j.biosystemseng.2016.02.017
28.
Team
,
E.
,
2017
,
EDEM 2017 User Guide: Creator
,
EDEM Company, Edinburgh, UK
.
29.
Abdeldayem
,
M. A. A.
,
Mabrouk
,
M. H.
, and
Abo-Elnor
,
M.
,
2019
, “
Estimating Uncertainties for the Driving Torque in Continuous Flight Augur Machine During Space Sampling Drilling Operation
,”
18th International Conference on Aerospace Sciences & Aviation Technology
,
IOP
: Military Technical College, Kobry Elkobbah,
Cairo, Egypt, pp. 1–14
30.
Mabrouk
,
M. H.
,
2013
, “
Crowd Behavior Simulation Using Artificial Potential Fields
,”
IAENG Int. J. Comput. Sci.
,
40
(
4
), pp.
1
10
.
31.
Abdelhamid
,
A. Y.
,
Abdelkader
,
H. A.
, and
Mabrouk
,
M. H.
,
2017
, “
Load Tracking and Anti-Sway Control for Telescopic Rotary Crane
,”
ASME
Paper No. IMECE2017-71940.10.1115/IMECE2017-71940
You do not currently have access to this content.