Abstract

Submodeling enables finite element engineers to focus analysis on the subregion containing the stress concentrator of interest with consequent computational savings. Such benefits are only really gained if the boundary conditions on the edges of the subregion that are drawn from an initial global finite element analysis (FEA) are verified to have been captured sufficiently accurately. Here, we offer a two-pronged approach aimed at realizing such solution verification. The first element of this approach is an improved means of assessing the error induced by submodel boundary conditions. The second element is a systematic sizing of the submodel region so that boundary-condition errors become acceptable. The resulting submodel procedure is demonstrated on a series of two-dimensional (2D) configurations with significant stress concentrations: four test problems and one application. For the test problems, the assessment means are uniformly successful in determining when submodel boundary conditions are accurate and when they are not. When, at first, they are not, the sizing approach is also consistently successful in enlarging submodel regions until submodel boundary conditions do become sufficiently accurate.

References

1.
Pilkey
,
W. D.
, and
Pilkey
,
D. F.
,
2008
,
Peterson's Stress Concentration Factors
, 3rd ed.,
Wiley
,
Hoboken, NJ
.
2.
Kurdi
,
O.
,
Rahman
,
R. A.
, and
Tamin
,
M. N.
,
2012
, “
Finite Element Analysis of Corroded Truck Chassis Using Submodeling Technique
,”
Appl. Mech. Mater.
,
110
, pp.
2411
2415
.10.4028/www.scientific.net/AMM.110-116.2411
3.
Gupta
,
S.
,
van der Helm
,
F. C. T.
, and
van Keulen
,
F.
,
2004
, “
Stress Analysis of Cemented Glenoid Prostheses in Total Shoulder Arthroplasty
,”
J. Biomech.
,
37
(
11
), pp.
1777
1786
.10.1016/j.jbiomech.2004.02.001
4.
Perillo
,
L.
,
Sorrentino
,
R.
,
Apicella
,
D.
,
Quaranta
,
A.
,
Gherlone
,
E.
,
Zarone
,
F.
,
Ferrari
,
M.
,
Aversa
,
R.
, and
Apicella
,
A.
,
2010
, “
Nonlinear Visco-Elastic Finite Element Analysis of Porcelain Veneers: A Submodelling Approach to Strain and Stress Distributions in Adhesive and Resin Cement
,”
J. Adhes. Dent.
,
12
(
5
), pp.
403
413
.10.3290/j.jad.a18394
5.
Norman
,
R. E.
,
Flanagan
,
J. G.
,
Sigal
,
I. A.
,
Rausch
,
S. M. K.
,
Tertinegg
,
I.
, and
Ethier
,
C. R.
,
2011
, “
Finite Element Modeling of the Human Sclera: Influence on Optic Nerve Head Biomechanics and Connections With Glaucoma
,”
Exp. Eye Res.
,
93
(
1
), pp.
4
12
.10.1016/j.exer.2010.09.014
6.
Lin
,
C. L.
,
Huang
,
S. F.
,
Tsai
,
H. C.
, and
Chang
,
W. J.
,
2011
, “
Finite Element Submodeling Analyses of Damage to Enamel at the Incisor Enamel/Adhesive Interface Upon Debonding for Different Orthodontic Bracket Bases
,”
J. Biomech.
,
44
(
1
), pp.
134
142
.10.1016/j.jbiomech.2010.08.038
7.
Ciptokusumo
,
J.
,
Weide-Zaage
,
K.
, and
Aubel
,
O.
,
2009
, “
Investigation of Stress Distribution in Via Bottom of Cu-Via Structures With Different Via Form by Means of Submodeling
,”
Microelectron. Reliab.
,
49
(
9–11
), pp.
1090
1095
.10.1016/j.microrel.2009.07.043
8.
Cormier
,
N. G.
,
Smallwood
,
B. S.
,
Sinclair
,
G. B.
, and
Meda
,
G.
,
1999
, “
Aggressive Submodelling of Stress Concentrations
,”
Int. J. Numer. Methods Eng.
,
46
(
6
), pp.
889
909
.10.1002/(SICI)1097-0207(19991030)46:6<889::AID-NME699>3.0.CO;2-F
9.
Sinclair
,
G. B.
,
Cormier
,
N. G.
,
Griffin
,
J. H.
, and
Meda
,
G.
,
2002
, “
Contact Stresses in Dovetail Attachments: Finite Element Modeling
,”
ASME J. Eng. Gas Turbines Power
,
124
(
1
), pp.
182
189
.10.1115/1.1391429
10.
Beisheim
,
J. R.
, and
Sinclair
,
G. B.
,
2003
, “
On the Three-Dimensional Finite Element Analysis of Dovetail Attachments
,”
ASME J. Turbomach.
,
125
(
2
), pp.
372
379
.10.1115/1.1539867
11.
Anandavel
,
K.
, and
Prakash
,
R. V.
,
2011
, “
Effect of Three-Dimensional Loading on Macroscopic Fretting Aspects of an Aero-Engine Blade-Disc Dovetail Interface
,”
Tribol. Int.
,
44
(
11
), pp.
1544
1555
.10.1016/j.triboint.2010.10.014
12.
Kitamura
,
M.
,
Ohtsubo
,
H.
,
Akiyama
,
A.
, and
Bandoh
,
H.
,
2003
, “
Submodeling Analysis of Ship Structure With Superconvergent Patch Recovery Method
,”
Int. J. Offshore Polar Eng.
,
13
(
3
), pp.
216
223
.https://www.onepetro.org/journal-paper/ISOPE-03-13-3-216
13.
Wang
,
X.
,
Mieth
,
U.
, and
Cappelletti
,
A. M.
,
2004
, “
Numerical Methods for Design of Bonded Joints for Ship Structures
,”
J. Eng. Marit. Environ.
,
218
, pp.
247
258
.10.1177/147509020421800404
14.
Wang
,
H.
,
Li
,
A.
,
Guo
,
T.
, and
Ma
,
S.
,
2009
, “
Accurate Stress Analysis on Rigid Central Buckle of Long-Span Suspension Bridges Based on Submodel Method
,”
Sci. China Ser. E: Tech. Sci.
,
52
(
4
), pp.
1019
1026
.10.1007/s11431-009-0070-z
15.
Wang
,
H.
,
Li
,
A.
,
Hu
,
R.
, and
Li
,
J.
,
2010
, “
Accurate Stress Analysis on Steel Box Girder of Long Span Suspension Bridges Based on Multi-Scale Submodeling Method
,”
Adv. Struc. Eng.
,
13
(
4
), pp.
727
740
.10.1260/1369-4332.13.4.727
16.
Kim
,
H. S.
, and
Mall
,
S.
,
2005
, “
Investigation Into Three-Dimensional Effects of Finite Contact Width on Fretting Fatigue
,”
Finite Elem. Anal. Des.
,
41
(
11–12
), pp.
1140
1159
.10.1016/j.finel.2005.02.001
17.
Lanoue
,
F.
,
Vadean
,
A.
, and
Sanschagrin
,
B.
,
2009
, “
Finite Element Analysis and Contact Modelling Considerations of Interference Fits for Fretting Fatigue Strength Calculations
,”
Simul. Modell. Pract. Theory
,
17
(
10
), pp.
1587
1602
.10.1016/j.simpat.2009.06.017
18.
Matlik
,
J. F.
,
Farris
,
T. N.
,
Haynes
,
J.
,
Swanson
,
G. R.
, and
Ham-Battista
,
G.
,
2009
, “
Prediction of Fretting Crack Location and Orientation in a Single Crystal Nickel Alloy
,”
Mech. Mater.
,
41
(
10
), pp.
1133
1151
.10.1016/j.mechmat.2009.04.002
19.
Wang
,
D.
,
Zhang
,
D.
, and
Ge
,
S.
,
2013
, “
Finite Element Analysis of Fretting Fatigue of Steel Wires and Crack Initiation Characteristics
,”
Eng. Fail. Anal.
,
28
, pp.
47
62
.10.1016/j.engfailanal.2012.09.007
20.
Zhao
,
G.
,
Shu
,
Q.
, and
Huang
,
B.
,
2011
, “
Numerical Analysis of Co-Cured Composite Single Lap Joint With Spew Fillets
,”
Adv. Mat. Res.
,
279
, pp.
219
223
.10.4028/www.scientific.net/AMR.279.219
21.
Liu
,
L.
, and
Chen
,
K.
,
2013
, “
Global-Local Finite Element Analysis of Thick Laminate Multi-Bolt Joints in Large-Scale Structures
,”
Finite Elem. Anal. Des.
,
75
, pp.
31
37
.10.1016/j.finel.2013.06.007
22.
Rajasekaran
,
R.
, and
Nowell
,
D.
,
2005
, “
On the Finite Element Analysis of Contacting Bodies Using Submodelling
,”
J. Strain Anal.
,
40
(
2
), pp.
95
106
.10.1243/030932405X7836
23.
Levesque
,
F.
,
Goudreau
,
S.
,
Cloutier
,
L.
, and
Cardou
,
A.
,
2011
, “
Finite Element Model of the Contact Between a Vibrating Conductor and a Suspension Clamp
,”
Tribol. Int.
,
44
, pp.
1014
1023
.10.1016/j.triboint.2011.04.006
24.
de Vahl Davis
,
G.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Bench-Mark Numerical Solution
,”
Int. J. Numer. Methods Fluids
,
3
(
3
), pp.
249
264
.10.1002/fld.1650030305
25.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for the Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
26.
Roache
,
P. J.
,
1998
, “
Verification of Codes and Calculations
,”
AIAA J.
,
36
(
5
), pp.
696
702
.10.2514/2.457
27.
Roache
,
P. J.
,
2009
,
Fundamentals of Verification and Validation
,
Hermosa Publications
,
Socorro, NM
.
28.
ASME,
2006
,
Guide for Verification and Validation in Computational Solid Mechanics
,
American Society of Mechanical Engineers
,
New York
, Standard No. ASME V & V10-2006.
29.
ASME
,
2012
,
An Illustration of the Concepts of Verification and Validation in Computational Solid Mechanics
,
American Society of Mechanical Engineers
,
New York
, Standard No. ASME V&V 10.1.
30.
Sinclair
,
G. B.
,
Beisheim
,
J. R.
, and
Roache
,
P. J.
,
2016
, “
Effective Convergence Checks for Verifying Finite Element Stresses at Two-Dimensional Stress Concentrations
,” ASME
J. Verif. Valid. Uncert.
,
1
(
4
), p.
041003
.10.1115/1.4034977
31.
Sinclair
,
G. B.
, and
Epps
,
B. P.
,
2002
, “
On the Logarithmic Stress Singularities Induced by the Use of Displacement Shape Functions in Boundary Conditions in Submodeling
,”
Commun. Numer. Methods Eng.
,
18
(
2
), pp.
121
130
.10.1002/cnm.473
32.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
,
2002
,
Concepts and Applications of Finite Element Analysis
, 4th ed.,
Wiley
,
New York
.
33.
Kolossoff
,
G.
,
1910
, “
On an Application of the Theory of Complex Variables to the Two-Dimensional Problem of Elasticity Theory
,”
Doctoral dissertation
,
St. Petersburg, Russia
.
34.
Inglis
,
C. E.
,
1913
, “
Stresses in a Plate Due to the Presence of Cracks and Sharp Corners
,”
Trans. Inst. Nav. Archit.
,
55
, pp.
219
241
.
35.
Hughes
,
W. F.
, and
Gaylord
,
E. W.
,
1964
,
Basic Equations of Engineering Science
,
Schaum
,
New York
.
36.
Kondo
,
M.
, and
Sinclair
,
G. B.
,
1982
, “
Stress and Displacement Fields for an Elliptical Hole in a Thick Elastic Plate Under Tension
,”
Department of Mechanical Engineering, Carnegie Mellon University
,
Pittsburgh, PA
. Report No. SM82-15.
37.
ANSYS,
2017
,
ANSYS Element Reference Guide
, Rev. 18.2.
ANSYS
,
Canonsburg, PA
.
38.
ANSYS,
2017
,
ANSYS Modeling and Meshing Guide
, Rev. 18.2,
ANSYS
,
Canonsburg, PA
.
You do not currently have access to this content.