Abstract

This paper summarizes an emerging process to establish credibility for surrogate models that cover multidimensional, continuous solution spaces. Various features lead to disagreement between the surrogate model's results and results from more precise computational benchmark solutions. In our verification process, this disagreement is quantified using descriptive statistics to support uncertainty quantification, sensitivity analysis, and surrogate model assessments. Our focus is stress-intensity factor (SIF) solutions. SIFs can be evaluated from simulations (e.g., finite element analyses), but these simulations require significant preprocessing, computational resources, and expertise to produce a credible result. It is not tractable (or necessary) to simulate a SIF for every crack front. Instead, most engineering analyses of fatigue crack growth (FCG) employ surrogate SIF solutions based on some combination of mechanics, interpolation, and SIF solutions extracted from earlier analyses. SIF values from surrogate solutions vary with local stress profiles and nondimensional degrees-of-freedom that define the geometry. The verification process evaluates the selected stress profiles and the sampled geometries using the surrogate model and a benchmark code (abaqus). The benchmark code employs a Python scripting interface to automate model development, execution, and extraction of key results. The ratio of the test code SIF to the benchmark code SIF measures the credibility of the solution. Descriptive statistics of these ratios provide convenient measures of relative surrogate quality. Thousands of analyses support visualization of the surrogate model's credibility, e.g., by rank-ordering of the credibility measure.

References

References
1.
Mcclung
,
R. C.
,
Lee
,
Y.
,
Cardinal
,
J. W.
, and
Guo
,
Y.
,
2013
, “
The Pursuit of K : Reflections on the Current State of the Art in Stress Intensity Factor Solutions for Practical Aerospace Applications
,”
Proceedings of the 27th Symposium on International Commission on Aeronautics Fatigue Structural Integration
, Jerusalem, Israel, June 3–7, pp.
361
75
.
2.
Tada
,
H.
,
Paris
,
P. C. P.
, and
Irwin
,
G. R.
,
1973
,
The Stress Analysis of Cracks
,
Hellertown, PA
.
3.
Nikishkov
,
G. P.
, and
Atluri
,
S. N.
,
1987
, “
Calculation of Fracture Mechanics Parameters for an Arbitrary Three‐Dimensional Crack, by the ‘Equivalent Domain Integral’ Method
,”
Int. J. Numer. Methods Eng.
,
24
(
9
), pp.
1801
1821
.10.1002/nme.1620240914
4.
Shivakumar
,
K. N.
,
Tan
,
P. W.
, and
Newman
,
J. C.
,
1988
, “
A Virtual Crack-Closure Technique for Calculating Stress Intensity Factors for Cracked Three Dimensional Bodies
,”
Int. J. Fract.
,
36
(
3
), pp.
R43
R50
.10.1007/BF00035103
5.
Barsoum
,
R. S.
,
1976
, “
On the Use of Isoparametric Finite Elements in Linear Fracture Mechanics
,”
Int. J. Numer. Methods Eng.
,
10
(
1
), pp.
25
37
.10.1002/nme.1620100103
6.
Fawaz
,
S. A.
,
1998
, “
Application of the Virtual Crack Closure Technique to Calculate Stress Intensity Factors for Through Cracks With an Elliptical Crack Front
,”
Eng. Fract. Mech.
,
59
(
3
), pp.
327
342
.10.1016/S0013-7944(97)00126-4
7.
Fawaz
,
S. A.
,
1999
, “
Stress Intensity Factor Solutions for Part-Elliptical Through Cracks
,”
Eng. Fract. Mech.
,
63
(
2
), pp.
209
226
.10.1016/S0013-7944(99)00003-X
8.
Fawaz
,
S. A.
, and
Andersson
,
B.
,
2004
, “
Accurate Stress Intensity Factor Solutions for Corner Cracks at a Hole
,”
Eng. Fract. Mech.
,
71
(
9–10
), pp.
1235
1254
.10.1016/S0013-7944(03)00207-8
9.
Rice
,
J. R.
,
1972
, “
Some Remarks on Elastic Crack-Tip Stress Fields
,”
Int. J. Solids Struct.
,
8
(
6
), pp.
751
758
.10.1016/0020-7683(72)90040-6
10.
Shen
,
G.
, and
Glinka
,
G.
,
1991
, “
Determination of Weight Functions From Reference Stress Intensity Factors
,”
Theor. Appl. Fract. Mech.
,
15
(
3
), pp.
237
245
.10.1016/0167-8442(91)90022-C
11.
Glinka
,
G.
, and
Shen
,
G.
,
1991
, “
Universal Features of Weight Functions for Cracks in Mode I
,”
Eng. Fract. Mech.
,
40
(
6
), pp.
1135
1146
.10.1016/0013-7944(91)90177-3
12.
Lee
,
Y. D.
,
McClung
,
R. C.
, and
Chell
,
G. G.
,
2008
, “
An Efficient Stress Intensity Factor Solution Scheme for Corner Cracks at Holes Under Bivariant Stressing
,”
Fatigue Fract. Eng. Mater. Struct.
,
31
(
11
), pp.
1004
1016
.10.1111/j.1460-2695.2008.01292.x
13.
John
,
R.
,
Kaldon
,
S. G.
,
Johnson
,
D. A.
, and
Coker
,
D.
,
1995
, “
Weight Function for a Single Edge Cracked Geometry With Clamped Ends
,”
Int. J. Fract.
,
72
(
2
), pp.
145
158
.10.1007/BF00042825
14.
Wang
,
X.
, and
Lambert
,
S. B.
,
1997
, “
Stress Intensity Factors and Weight Functions for High Aspect Ratio Semi-Elliptical Surface Cracks in Finite-Thickness Plates
,”
Eng. Fract. Mech.
,
57
(
1
), pp.
13
24
.10.1016/S0013-7944(97)00018-0
15.
Ferahi
,
M.
, and
Meguid
,
S. A.
,
1998
, “
A Novel Approach for Evaluating Weight Functions for Cracks in Finite Bodies
,”
Eng. Fract. Mech.
,
59
(
3
), pp.
343
352
.10.1016/S0013-7944(97)00091-X
16.
Wu
,
X.
,
2019
, “
A Review and Verification of Analytical Weight Function Methods in Fracture Mechanics
,”
Fatigue Fract. Eng. Mater. Struct.
,
42
(
9
), pp.
2017
2042
.10.1111/ffe.13073
17.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), p.
239
.10.1080/00401706.1979.10489755
18.
Simpson
,
T. W.
,
Lin
,
D. K. J.
, and
Chen
,
W.
,
2001
, “
Sampling Strategies for Computer Experiments: Design and Analysis
,”
Int. J. Reliab. Appl.
,
2
(
3
), pp.
209
240
.
19.
Oberkampf
,
W. L.
,
Trucano
,
T. G.
, and
Hirsch
,
C.
,
2004
, “
Verification, Validation, and Predictive Capability in Computational Engineering and Physics
,”
ASME Appl. Mech. Rev.
,
57
(
5
), p.
345
.10.1115/1.1767847
20.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
1st ed
,
Cambridge University Press
,
New York
.
21.
Nakamura
,
T.
, and
Parks
,
D. M.
,
1988
, “
Three-Dimensional Stress Field Near the Crack Front of a Thin Elastic Plate
,”
ASME J. Appl. Mech.
,
55
(
4
), p.
805
.10.1115/1.3173725
22.
Pook
,
L. P.
,
1994
, “
Some Implications of Corner Point Singularities
,”
Eng. Fract. Mech.
,
48
(
3
), pp.
367
378
.10.1016/0013-7944(94)90127-9
23.
Irwin
,
G. R.
,
1962
, “
Crack-Extension Force for a Part-Through Crack in a Plate
,”
ASME J. Appl. Mech.
,
29
(
4
), p.
651
.10.1115/1.3640649
24.
Newman
,
J. C.
, and
Raju
,
I. S.
,
1981
, “
An Empirical Stress-Intensity Factor Equation for the Surface Crack
,”
Eng. Fract. Mech.
,
15
(
1–2
), pp.
185
192
.10.1016/0013-7944(81)90116-8
You do not currently have access to this content.