Abstract

A dynamic physics-based model developed for the prediction of biohydrogen production in a compact tubular photobioreactor (PBR) was calibrated experimentally. The spatial domain in the model was discretized with lumped control volumes and the principles of classical thermodynamics, mass, species, and heat transfer were combined to derive a system of ordinary differential equations, whose solution was the temperature and mass fraction distributions across the entire system. Two microalgae species, namely, Acutodesmus obliquus and Chlamydomonas reinhardtii strain cc125, were cultured in triplicate with different culture media via indirect biophotolysis. Measured biomass and hydrogen concentrations were then used to adjust the specific microalgae growth and hydrogen production rates in the model based on residual sum of squares (RSS) and the direct search method. Despite its simplicity, the presented volume element model was verified to well predict both hydrogen and biomass concentration over time. The microalgae growth rate for each species was determined as 2.16 μalga,0 s−1 and 0.91 μalga,0 s−1 for A. obliquus and C. reinhardtii strain cc125, respectively, where μalga,0 is the specific growth rate of Scenedesmus almeriensis for given temperature and irradiance. The adjusted maximum hydrogen production rates for the local nonmutant A. obliquus and for C. reinhardtii strain cc125 were 1.3 × 10−7 s−1 and 4.1 × 10−7 s−1. Consequently, these hydrogen production rates were 59 times and 19 times smaller, respectively, than that for the mutant C. reinhardtii strain cc849.

References

References
1.
Kapdan
,
I. K.
, and
Kargi
,
F.
,
2006
, “
Bio-Hydrogen Production From Waste Materials
,”
Enzyme Microb. Technol.
,
38
(
5
), pp.
569
582
.10.1016/j.enzmictec.2005.09.015
2.
Ball
,
M.
, and
Wietschel
,
M.
,
2009
, “
The Future of Hydrogen–Opportunities and Challenges
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
615
627
.10.1016/j.ijhydene.2008.11.014
3.
Jamil
,
M.
,
Ahmad
,
F.
, and
Jeon
,
Y.
,
2016
, “
Renewable Energy Technologies Adopted by the UAE: Prospects and Challenges–A Comprehensive Overview
,”
Renewable Sustainable Energy Rev.
,
55
, pp.
1181
1194
.10.1016/j.rser.2015.05.087
4.
Trad
,
Z.
,
Akimbomi
,
J.
,
Vial
,
C.
,
Larroche
,
C.
,
Taherzadeh
,
M. J.
, and
Fontaine
,
J.-P.
,
2015
, “
Development of a Submerged Anaerobic Membrane Bioreactor for Concurrent Extraction of Volatile Fatty Acids and Biohydrogen Production
,”
Bioresour. Technol.
,
196
, pp.
290
300
.10.1016/j.biortech.2015.07.095
5.
Suganya
,
T.
,
Varman
,
M.
,
Masjuki
,
H.
, and
Renganathan
,
S.
,
2016
, “
Macroalgae and Microalgae as a Potential Source for Commercial Applications Along With Biofuels Production: A Biorefinery Approach
,”
Renewable Sustainable Energy Rev.
,
55
, pp.
909
941
.10.1016/j.rser.2015.11.026
6.
Ginkel
,
S. V.
,
Sung
,
S.
, and
Lay
,
J.-J.
,
2001
, “
Biohydrogen Production as a Function of ph and Substrate Concentration
,”
Environ. Sci. Technol.
,
35
(
24
), pp.
4726
4730
.10.1021/es001979r
7.
Sharma
,
S.
, and
Ghoshal
,
S. K.
,
2015
, “
Hydrogen the Future Transportation Fuel: From Production to Applications
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
1151
1158
.10.1016/j.rser.2014.11.093
8.
Vargas
,
J. V. C.
,
Balmont
,
W.
,
Stall
,
A.
,
Mariano
,
A. B.
,
Ordonez
,
J. C.
,
Hovsapian
,
Z.
, and
Dilay
,
E.
,
2012
, “
Photobioreactor System
,” U.S. Patent application 13/271,622.
9.
Satyanarayana
,
K.
,
Mariano
,
A.
, and
Vargas
,
J.
,
2011
, “
A Review on Microalgae, a Versatile Source for Sustainable Energy and Materials
,”
Int. J. Energy Res.
,
35
(
4
), pp.
291
311
.10.1002/er.1695
10.
Telles
,
E.
,
Yang
,
S.
,
Vargas
,
J.
,
Dias
,
F.
,
Ordonez
,
J.
,
Mariano
,
A.
,
Chagas
,
M.
, and
Davis
,
T.
,
2018
, “
A Genset and Mini-Photobioreactor Association for CO2 Capturing, Enhanced Microalgae Growth and Multigeneration
,”
Renewable Energy
,
125
, pp.
985
994
.10.1016/j.renene.2018.03.027
11.
Wu
,
S.
,
Xu
,
L.
,
Huang
,
R.
, and
Wang
,
Q.
,
2011
, “
Improved Biohydrogen Production With an Expression of Codon-Optimized Hemh and Lba Genes in the Chloroplast of Chlamydomonas Reinhardtii
,”
Bioresour. Technol.
,
102
(
3
), pp.
2610
2616
.10.1016/j.biortech.2010.09.123
12.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
, Hoboken, NJ.
13.
Vargas
,
J.
,
Mariano
,
A.
,
Corrêa
,
D.
, and
Ordonez
,
J.
,
2014
, “
The Microalgae Derived Hydrogen Process in Compact Photobioreactors
,”
Int. J. Hydrogen Energy
,
39
(
18
), pp.
9588
9598
.10.1016/j.ijhydene.2014.04.093
14.
Dilay
,
E.
,
Vargas
,
J. V. C.
,
Souza
,
J. A.
,
Ordonez
,
J. C.
,
Yang
,
S.
, and
Mariano
,
A. B.
,
2015
, “
A Volume Element Model (Vem) for Energy Systems Engineering
,”
Int. J. Energy Res.
,
39
(
1
), pp.
46
74
.10.1002/er.3209
15.
Grima
,
E. M.
,
Camacho
,
F. G.
,
Perez
,
J. S.
,
Sevilla
,
J. F.
,
Fernandez
,
F. A.
, and
Gomez
,
A. C.
,
1994
, “
A Mathematical Model of Microalgal Growth in Light-Limited Chemostat Culture
,”
J. Chem. Technol. Biotechnol.
,
61
(
2
), pp.
167
173
.10.1002/jctb.280610212
16.
Sánchez
,
J.
,
Fernández-Sevilla
,
J.
,
Acién
,
F.
,
Cerón
,
M.
,
Pérez-Parra
,
J.
, and
Molina-Grima
,
E.
,
2008
, “
Biomass and Lutein Productivity of Scenedesmus Almeriensis: Influence of Irradiance, Dilution Rate and Temperature
,”
Appl. Microbiol. Biotechnol.
,
79
(
5
), pp.
719
729
.10.1007/s00253-008-1494-2
17.
Menten
,
L.
, and
Michaelis
,
M.
,
1913
, “
Die Kinetik Der Invertinwirkung
,” Biochemische Zeitschrift,
49
, pp.
333
369
.
18.
Kincaid
,
D.
, and
Cheney
,
W.
,
2002
,
Numerical Analysis: Mathematics of Scientific Computation
,
American Mathematical Society
, Providence, RI.
19.
Roache
,
P. J.
,
Ghia
,
K. N.
, and
White
,
F. M.
,
2009
, “
Editorial Policy Statement on the Control of Numerical Accuracy
,”
ASME J. Fluids Eng.
,
108
(
1
), pp.
2
2
.10.1115/1.3242537
20.
Coleman
,
H.
,
1994
, “
Editorial-Journal of Heat Transfer Editorial Policy Statement on Numerical Accuracy
,”
ASME J. Heat Transfer
,
116
(
4
), pp.
797
798
.10.1115/1.2911449
21.
Draper
,
N. R.
, and
Smith
,
H.
,
2014
,
Applied Regression Analysis
, Vol.
326
,
Wiley
, Hoboken, NJ.
22.
Fragoso
,
C. R.
, Jr.
,
Ferreira
,
T. F.
, and
da Motta Marques
,
D.
,
2009
,
Modelagem Ecológica em Ecossistemas Aquáticos
,
Oficina de Textos
, São Paulo, SP, Brazil.
You do not currently have access to this content.