Abstract

While Reynolds-averaged simulations have found success in the evaluation of many canonical shear flows and moderately separated flows, their application to highly separated flows have shown notable deficiencies. This study aimed to investigate these deficiencies in the eddy-viscosity formulation of four commonly used turbulence models under separated flow in an attempt to aid in the improved formulation of such models. Analyses are performed on the flow field around a wall-mounted cube (WMC) at a Reynolds number of 40,000 based on the cube height, h, and freestream velocity, U0. While a common occurrence in industrial applications, this type of flow constitutes a complex structure exhibiting a large separated wake region, high anisotropy, and multiple vortex structures. As well, interactions between vortices developed off of different faces of the cube significantly alter the overall flow characteristics, posing a significant challenge for the commonly used industrial turbulence models. Comparison of mean flow characteristics show remarkable agreement between experimental values and turbulence models which are capable of predicting transitional flow. Evaluation of turbulence parameters show the general underestimation of Reynolds stress for transitional models, while fully turbulent models show this value to be overestimated, resulting in completely disparate representations of mean flow structures between the two classes of models (transitional and fully turbulent).

References

References
1.
Lakehal
,
D.
, and
Rodi
,
W.
,
1997
, “
Calculation of the Flow Past a Surface-Mounted Cube With Two-Layer Turbulence Models
,”
J. Wind Eng. Ind. Aerodyn.
,
67–68
, pp.
65
78
.10.1016/S0167-6105(97)00063-9
2.
Rodi
,
W.
,
1997
, “
Comparison of LES and RANS Calculations of the Flow Around Bluff Bodies
,”
J. Wind Eng. Ind. Aerodyn.
,
69
-71, pp.
55
75
.10.1016/S0167-6105(97)00147-5
3.
Kim
,
J.-Y.
,
Ghajar
,
A. J.
,
Tang
,
C.
, and
Foutch
,
G. L.
,
2005
, “
Comparison of Near-Wall Treatment Methods for High Reynolds Number Backward-Facing Step Flow
,”
Int. J. Comput. Fluid Dyn.
,
19
(
7
), pp.
493
500
.10.1080/10618560500502519
4.
Tominaga
,
Y.
, and
Stathopoulos
,
T.
,
2009
, “
Numerical Simulation of Dispersion Around an Isolated Cubic Building: Comparison of Various Types of kε Models
,”
Atmos. Environ.
,
43
(
20
), pp.
3200
3210
.10.1016/j.atmosenv.2009.03.038
5.
Tominaga
,
Y.
, and
Stathopoulos
,
T.
,
2010
, “
Numerical Simulation of Dispersion Around an Isolated Cubic Building: Model Evaluation of RANS and LES
,”
Build. Environ.
,
45
(
10
), pp.
2231
2239
.10.1016/j.buildenv.2010.04.004
6.
Tominaga
,
Y.
,
2015
, “
Flow Around a High-Rise Building Using Steady and Unsteady RANS CFD: Effect of Large-Scale Fluctuations on the Velocity Statistics
,”
J. Wind Eng. Ind. Aerodyn.
,
142
, pp.
93
103
.10.1016/j.jweia.2015.03.013
7.
Tominaga
,
Y.
, and
Stathopoulos
,
T.
,
2017
, “
Steady and Unsteady RANS Simulations of Pollutant Dispersion Around Isolated Cubical Buildings: Effect of Large-Scale Fluctuations on the Concentration Field
,”
J. Wind Eng. Ind. Aerodyn.
,
165
, pp.
23
33
.10.1016/j.jweia.2017.02.001
8.
Davis
,
P.
,
Rinehimer
,
A.
, and
Uddin
,
M.
,
2012
, “
A Comparison of Rans-Based Turbulence Modeling for Flow Over a Wall-Mounted Square Cylinder
,”
20th Annual Conference of the CFD Society of Canada
, Canmore, AL, Canada, May 9–11, pp.
9
12
.https://www.researchgate.net/publication/288670076_A_Comparison_of_RANS-Based_Turbulence_Modeling_for_Flow_over_a_Wall-Mounted_Square_Cylinder
9.
Iaccarino
,
G.
,
Ooi
,
A.
,
Durbin
,
P.
, and
Behnia
,
M.
,
2003
, “
Reynolds Averaged Simulation of Unsteady Separated Flow
,”
Int. J. Heat Fluid Flow
,
24
(
2
), pp.
147
156
.10.1016/S0142-727X(02)00210-2
10.
Breuer
,
M.
,
Lakehal
,
D.
, and
Rodi
,
W.
,
1996
, “
Flow Around a Surface Mounted Cubical Obstacle: Comparison of LES and RANS-Results
,”
Computation of Three-Dimensional Complex Flows
,
Springer
, Fachmedien Wiesbaden GmbH, Wiesbaden, Germany, pp.
22
30
.
11.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
12.
Yakhot
,
V.
,
Orszag
,
S.
,
Thangam
,
S.
,
Gatski
,
T.
, and
Speziale
,
C.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A: Fluid Dyn.
,
4
(
7
), pp.
1510
1520
.10.1063/1.858424
13.
Durbin
,
P. A.
,
1991
, “
Near-Wall Turbulence Closure Modeling Without ‘Damping Functions’
,”
Theor. Comput. Fluid Dyn.
,
3
(
1
), pp.
1
13
.10.1007/BF00271513
14.
Elkhoury
,
M.
,
2016
, “
Assessment of Turbulence Models for the Simulation of Turbulent Flows Past Bluff Bodies
,”
J. Wind Eng. Ind. Aerodyn.
,
154
, pp.
10
20
.10.1016/j.jweia.2016.03.011
15.
Krajnović
,
S.
,
2009
, “
Large Eddy Simulation of Flows Around Ground Vehicles and Other Bluff Bodies
,”
Philos. Trans. R. Soc., A
,
367
(
1899
), pp.
2917
2930
.10.1098/rsta.2009.0021
16.
Krajnović
,
S.
,
Minelli
,
G.
, and
Basara
,
B.
,
2016
, “
Partially-Averaged Navier–Stokes Simulations of Two Bluff Body Flows
,”
Appl. Math. Comput.
,
272
(Pt. 3), pp.
692
706
.10.1016/j.amc.2015.03.136
17.
Schmidt
,
S.
, and
Thiele
,
F.
,
2002
, “
Comparison of Numerical Methods Applied to the Flow Over Wall-Mounted Cubes
,”
Int. J. Heat Fluid Flow
,
23
(
3
), pp.
330
339
.10.1016/S0142-727X(02)00180-7
18.
Eça
,
L.
,
Pereira
,
F.
, and
Vaz
,
G.
,
2018
, “
Viscous Flow Simulations at High Reynolds Numbers Without Wall Functions: Is y+ ≈ 1 Enough for the Near-Wall Cells?
,”
Comput. Fluids
,
170
, pp.
157
175
.10.1016/j.compfluid.2018.04.035
19.
Castro
,
I.
, and
Robins
,
A.
,
1977
, “
The Flow Around a Surface-Mounted Cube in Uniform and Turbulent Streams
,”
J. Fluid Mech.
,
79
(
2
), pp.
307
335
.10.1017/S0022112077000172
20.
Martinuzzi
,
R.
, and
Tropea
,
C.
,
1993
, “
The Flow Around Surface-Mounted, Prismatic Obstacles Placed in a Fully Developed Channel Flow (Data Bank Contribution)
,”
ASME J. Fluids Eng.
,
115
(
1
), pp.
85
92
.10.1115/1.2910118
21.
Hussein
,
H. J.
, and
Martinuzzi
,
R.
,
1996
, “
Energy Balance for Turbulent Flow Around a Surface Mounted Cube Placed in a Channel
,”
Phys. Fluids
,
8
(
3
), pp.
764
780
.10.1063/1.868860
22.
Yakhot
,
A.
,
Liu
,
H.
, and
Nikitin
,
N.
,
2006
, “
Turbulent Flow Around a Wall-Mounted Cube: A Direct Numerical Simulation
,”
Int. J. Heat Fluid Flow
,
27
(
6
), pp.
994
1009
.10.1016/j.ijheatfluidflow.2006.02.026
23.
Curley
,
A.
, and
Uddin
,
M.
,
2015
, “
Direct Numerical Simulation of Turbulent Flow Around a Surface Mounted Cube
,”
AIAA
Paper No. 3431.10.2514/6.3431
24.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.10.2514/1.42362
25.
Abe
,
K.
,
Kondoh
,
T.
, and
Nagano
,
Y.
,
1994
, “
A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows—I: Flow Field Calculations
,”
Int. J. Heat Mass Transfer
,
37
(
1
), pp.
139
151
.10.1016/0017-9310(94)90168-6
26.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New kε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
27.
Davidson
,
L.
,
Nielsen
,
P. V.
, and
Sveningsson
,
A.
,
2003
, “
Modifications of the ú2-Model for Computing the Flow in a 3D Wall Jet
,”
International Symposium on Turbulence, Heat and Mass Transfer
, Antalya, Turkey, Oct. 12–17, pp.
577
584
.
28.
Liu
,
Y.
,
Pekkan
,
K.
,
Jones
,
S. C.
, and
Yoganathan
,
A. P.
,
2004
, “
The Effects of Different Mesh Generation Methods on Computational Fluid Dynamic Analysis and Power Loss Assessment in Total Cavopulmonary Connection
,”
ASME J. Biomech. Eng.
,
126
(
5
), pp.
594
603
.10.1115/1.1800553
29.
Rhie
,
C. M.
, and
Chow
,
W. L.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
(
11
), pp.
1525
1532
.10.2514/3.8284
30.
CD-adapco
,
2015
, “STAR-CCM+® User Manual, Version 11.04,” CD-adapco.
31.
ASME
,
2009
, “
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,” American Society of Mechanical Engineers, New York, Standard No. ASME V&V 20–2009.
32.
Eça
,
L.
, and
Hoekstra
,
M.
,
2014
, “
A Procedure for the Estimation of the Numerical Uncertainty of CFD Calculations Based on Grid Refinement Studies
,”
J. Comput. Phys.
,
262
, pp.
104
130
.10.1016/j.jcp.2014.01.006
33.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
123
160
.10.1146/annurev.fluid.29.1.123
34.
Bradbury
,
L.
,
1976
, “
Measurements With a Pulsed-Wire and a Hot-Wire Anemometer in the Highly Turbulent Wake of a Normal Flat Plate
,”
J. Fluid Mech.
,
77
(
3
), pp.
473
497
.10.1017/S0022112076002218
35.
Dengel
,
P.
,
Fernholz
,
H.
, and
Vagt
,
J.-D.
,
1982
, “
Turbulent and Mean Flow Measurements in an Incompressible Axisymmetric Boundary Layer With Incipient Separation
,”
Turbulent Shear Flows 3
,
Springer
, Berlin, pp.
225
236
.
36.
Hunt
,
J.
,
Abell
,
C.
,
Peterka
,
J.
, and
Woo
,
H.
,
1978
, “
Kinematical Studies of the Flows Around Free or Surface-Mounted Obstacles; Applying Topology to Flow Visualization
,”
J. Fluid Mech.
,
86
(
1
), pp.
179
200
.10.1017/S0022112078001068
37.
Diaz-Daniel
,
C.
,
Laizet
,
S.
, and
Vassilicos
,
J. C.
,
2017
, “
Direct Numerical Simulations of a Wall-Attached Cube Immersed in Laminar and Turbulent Boundary Layers
,”
Int. J. Heat Fluid Flow
,
68
, pp.
269
280
.10.1016/j.ijheatfluidflow.2017.09.015
38.
Chen
,
Q.
,
Qi
,
M.
,
Zhong
,
Q.
, and
Li
,
D.
,
2017
, “
Experimental Study on the Multimodal Dynamics of the Turbulent Horseshoe Vortex System Around a Circular Cylinder
,”
Phys. Fluids
,
29
(
1
), p.
015106
.10.1063/1.4974523
39.
Shinde
,
S.
,
Johnson
,
E.
, and
Maki
,
K.
,
2017
, “
Understanding the Effect of Cube Size on the Near Wake Characteristics in a Turbulent Boundary Layer
,”
AIAA
Paper No. 3640.10.2514/6.3640
You do not currently have access to this content.