This paper reports a verification study for a method that fits functions to sets of data from several experiments simultaneously. The method finds a maximum a posteriori probability estimate of a function subject to constraints (e.g., convexity in the study), uncertainty about the estimate, and a quantitative characterization of how data from each experiment constrains that uncertainty. While this work focuses on a model of the equation of state (EOS) of gasses produced by detonating a high explosive, the method can be applied to a wide range of physics processes with either parametric or semiparametric models. As a verification exercise, a reference EOS is used and artificial experimental data sets are created using numerical integration of ordinary differential equations and pseudo-random noise. The method yields an estimate of the EOS that is close to the reference and identifies how each experiment most constrains the result.

References

References
1.
Stuart
,
A. M.
,
2010
, “
Inverse Problems: A Bayesian Perspective
,”
Acta Numer.
,
19
, pp.
451
559
.
2.
Vaughan
,
D. E.
, and
Preston
,
D. L.
,
2015
, “
Physical Uncertainty Bounds (PUB)
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR 14-20441.
3.
Moran
,
M. J.
, and
Shapiro
,
H. N.
,
2004
,
Fundamentals of Engineering Thermodynamics
,
5th ed.
,
Wiley
,
Hoboken, NJ
.
4.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
,
63
(
3
), pp.
425
464
.
5.
Higdon
,
D.
,
Gattiker
,
J.
,
Williams
,
B.
, and
Rightley
,
M.
,
2008
, “
Computer Model Calibration Using High-Dimensional Output
,”
J. Am. Stat. Assoc.
,
103
(
482
), pp.
570
583
.
6.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2012
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
.
7.
ASME,
2006
, “
Guide for Verification and Validation in Computational Solid Mechanics
,”
American Society of Mechanical Engineers, New York,
Standard No. V&V 10-2006.
8.
Wu
,
S.
,
Beck
,
J. L.
, and
Koumoutsakos
,
P.
,
2018
, “
Hierarchical Stochastic Model in Bayesian Inference for Engineering Applications: Theoretical Implications and Efficient Approximation
,”
ASME J. Risk Uncertainty Part B
,
5
(
1
), p. 011006.
9.
Ramussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning
,
The MIT Press
,
Cambridge, MA
.
10.
Bayarri
,
M. J.
,
Berger
,
J. O.
,
Paulo
,
R.
,
Sacks
,
J.
,
Cafeo
,
J. A.
,
Cavendish
,
J.
,
Lin
,
C.-H.
, and
Tu
,
J.
,
2007
, “
A Framework for Validation of Computer Models
,”
Technometrics
,
49
(
2
), pp.
138
154
.
11.
Fickett
,
W.
, and
Davis
,
W. C.
,
2000
,
Detonation: Theory and Experiment
,
Dover
,
Mineola, NY
.
12.
Lee
,
E. L.
,
Hornig
,
H. C.
, and
Kury
,
J. W.
,
1968
, “
Adiabatic Expansion of High Explosive Detonation Products
,” Lawrence Radiation Laboratory, Livermore CA, Report No.
UCRL-50422
.https://www.osti.gov/servlets/purl/4783904/
13.
Dierckx
,
P.
,
1993
,
Curve and Surface Fitting With Splines. Monographs on Numerical Analysis
,
Oxford University Press
,
Oxford, UK
.
14.
Horie
,
Y.
, ed.,
2007
,
Solids I (Shock Wave Science and Technology Reference Library, Vol. 2)
,
Springer
,
Berlin
.
15.
Preston
,
D. L.
,
Tonks
,
D. L.
, and
Wallace
,
D. C.
,
2003
, “
Model of Plastic Deformation for Extreme Loading Conditions
,”
J. Appl. Phys.
,
93
(
1
), pp.
211
220
.
16.
Bartel
,
M.
, and
Young
,
T. M.
,
2008
, “
Simplified Thrust and Fuel Consumption Models for Modern Two-Shaft Turbofan Engines
,”
J. Aircr.
,
45
(
4
), pp.
1450
1456
.
17.
Azevedo-Filho
,
A.
, and
Shachter
,
R. D.
,
1994
, “
Laplace's Method Approximations for Probabilistic Inference in Belief Networks With Continuous Variables
,”
Uncertainty in Artificial Intelligence
,
L. R.
de Mantara
and
D.
Poole
, eds.,
Morgan Kaufmann
,
San Francisco, CA
, pp.
28
36
.
18.
Au
,
S.-K.
, and
Li
,
B.
,
2017
, “
Posterior Uncertainty, Asymptotic Law and Cramér Rao Bound
,”
Struct. Control Health Monit.
,
25
(3), pp.
1
21
.
19.
Catanach
,
R.
,
Hill
,
L.
,
Harry
,
H.
,
Aragon
,
E.
, and
Murk
,
D.
,
1999
, “
Cylinder Test Specification
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA 13643-MS.
20.
Hibbeler
,
R. C.
,
2005
,
Mechanics of Materials
,
Pearson Prentice
,
Upper Saddle River, NJ
.
21.
Jones
,
E.
,
Oliphant
,
T.
, and
Peterson
,
P.
,
2001
, “
SciPy: Open Source Scientific Tools for Python
,” accessed June 7, 2018, http://www.scipy.org/
22.
Hill
,
L. G.
,
2002
, “
Development of the LANL Sandwich Test
,”
AIP Conf. Proc.
,
620
, p. 149.
23.
Jones
,
H.
, and
Miller
,
A. R.
,
1948
, “
The Detonation of Solid Explosives: The Equilibrium Conditions in the Detonation Wave-Front and the Adiabatic Expansion of the Products of Detonation
,”
Proc. R. Soc. London, Ser. A
,
194
(
1039
), pp.
480
507
.
24.
Gelman
,
A.
,
Carlin
,
J. B.
,
Stern
,
H. S.
,
Dunson
,
D. B.
,
Vehtari
,
A.
, and
Rubin
,
D. B.
,
2013
,
Bayesian Data Analysis
,
3rd ed.
,
CRC Press
,
Boca Raton, FL
.
25.
Calderhead
,
B.
, and
Girolami
,
M.
,
2009
, “
Estimating Bayes Factors Via Thermodynamic Integration and Population MCMC
,”
Comput. Stat. Data Anal.
,
53
(
12
), pp.
4028
4045
.
26.
Gelman
,
A.
, and
Rubin
,
D. B.
,
1992
, “
Inference From Iterative Simulation Using Multiple Sequences
,”
Stat. Sci.
,
7
(
4
), pp.
457
472
.
27.
Hunter
,
J. D.
,
2007
, “
Matplotlib: A 2D Graphics Environment
,”
Comput. Sci. Eng.
,
9
(3), pp.
90
95
.
28.
Oliphant
,
T.
,
2006
,
A Guide to NumPy
,
Trelgol Publishing
.
29.
Behnel
,
S.
,
Bradshaw
,
R.
,
Citro
,
C.
,
Dalcin
,
L.
,
Seljebotn
,
D. S.
, and
Smith
,
K.
,
2011
, “
Cython: The Best of Both Worlds
,”
Comput. Sci. Eng.
,
13
, pp.
31
39
.
You do not currently have access to this content.