Although mass production parts look the same at first sight, every manufactured part is unique, at least on a closer inspection. The reason for this is that every manufactured part is inevitable subjected to different scattering influencing factors and variation in the manufacturing process, such as varying temperatures or tool wear. Products, which are built from these deviation-afflicted parts, consequently show deviations from their ideal properties. To ensure that every single product nevertheless meets its technical requirements, it is necessary to specify the permitted deviations. Furthermore, it is crucial to estimate the consequences of the permitted deviations, which is done via tolerance analysis. During this process, the imperfect parts are assembled virtually and the effects of the geometric deviations can be calculated. Since the tolerance analysis enables engineers to identify weak points in an early design stage, it is important to know which contribution every single tolerance has on a certain quality-relevant characteristic to restrict or increase the correct tolerances. In this paper, four different methods to calculate the sensitivity are introduced and compared. Based on the comparison, guidelines are derived which are intended to facilitate a selection of these different methods. In particular, a newly developed approach, which is based on fuzzy arithmetic, is compared to the established high–low–median method, a variance-based method, and a density-based approach. Since all these methods are based on different assumptions, their advantages and disadvantages are critically discussed based on two case studies.

References

References
1.
Wärmefjord
,
K.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2008
, “
Tolerance Simulation of Compliant Sheet Metal Assemblies Using Automatic Node-Based Contact Detection
,”
ASME
Paper No. IMECE2008-66344.
2.
Thornton
,
A. C.
,
1999
, “
A Mathematical Framework for the Key Characteristic Process
,”
Res. Eng. Des.
,
11
(
3
), pp.
145
157
.
3.
Davidson
,
J. K.
,
Mujezinović
,
A.
, and
Shah
,
J. J.
,
2002
, “
A New Mathematical Model for Geometric Tolerances as Applied to Round Faces
,”
ASME J. Mech. Des.
,
124
(
4
), pp.
609
622
.
4.
Teissandier
,
D.
, and
Delos
,
V.
,
2011
, “
Algorithm to Calculate the Minkowski Sums of 3-Polytopes Based on Normal Fans
,”
Comput.-Aided Des.
,
43
(
12
), pp.
1567
1576
.
5.
Giordano
,
M.
,
Samper
,
S.
, and
Petit
,
J. P.
,
2007
, “
Tolerance Analysis and Synthesis by Means of Deviation Domains, Axi-Symmetric Cases
,”
Models for Computer Aided Tolerancing in Design and Manufacturing
,
J. K.
Davidson
,
ed.
,
Springer
,
Dordrecht, The Netherlands
, pp.
85
94
.
6.
Schleich
,
B.
,
Wartzack
,
S.
,
Anwer
,
N.
, and
Mathieu
,
L.
,
2015
, “
Skin Model Shapes: Offering New Potentials for Modelling Product Shape Variability
,”
ASME
Paper No. V01AT02A015.
7.
Heling
,
B.
,
Hallmann
,
M.
, and
Wartzack
,
S.
,
2017
, “
Hybrid Tolerance Representation of Systems in Motion
,”
Procedia CIRP
,
60
, pp.
50
55
.
8.
Geis
,
A.
,
Husung
,
S.
,
Oberänder
,
A.
,
Weber
,
C.
, and
Adam
,
J.
,
2015
, “
Use of Vectorial Tolerances for Direct Representation and Analysis in CAD-Systems
,”
Procedia CIRP
,
27
, pp.
230
240
.
9.
Heling
,
B.
,
Aschenbrenner
,
A.
,
Walter
,
M.
, and
Wartzack
,
S.
,
2016
, “
On Connected Tolerances in Statistical Tolerance-Cost-Optimization of Assemblies With Interrelated Dimension Chains
,”
Procedia CIRP
,
43
, pp.
262
267
.
10.
Saltelli
,
A.
,
2008
,
Global Sensitivity Analysis: The Primer
,
Wiley
,
Chichester, UK
.
11.
Dantan
,
J.-Y.
, and
Qureshi
,
A.-J.
,
2009
, “
Worst-Case and Statistical Tolerance Analysis Based on Quantified Constraint Satisfaction Problems and Monte Carlo Simulation
,”
Comput.-Aided Des.
,
41
(
1
), pp.
1
12
.
12.
Giordano
,
M.
,
Mathieu
,
L.
, and
Villeneuve
,
F.
,
2010
,
Product Lifecycle Management: Geometric Variations
,
ISTE, Wiley
,
London; Hoboken, NJ
.
13.
Khodaygan
,
S.
, and
Movahhedy
,
M. R.
,
2015
, “
A Comprehensive Fuzzy Feature-Based Method for Worst Case and Statistical Tolerance Analysis
,”
Int. J. Comput. Integr. Manuf.
,
5
(
4
), pp.
1
22
.
14.
Hanss
,
M.
,
2010
,
Applied Fuzzy Arithmetic
,
Springer-Verlag
,
Berlin
.
15.
Cavalini
,
A. A.
,
Dourado
,
A. G. S.
,
Lara-Molina
,
F. A.
, and
Steffen
,
V.
,
2016
, “
Uncertainty Analysis of a Tilting-Pad Journal Bearing Using Fuzzy Logic Techniques
,”
ASME J. Vib. Acoust.
,
138
(
6
), p.
061016
.
16.
Stuppy
,
J.
, and
Meerkamm
,
H.
,
2009
, “
Tolerance Analysis of a Crank Mechanism by Taking Into Account Different Kinds of Deviation
,”
11th CIRP Inter-National Conference on Computer Aided Tolerancing
,
M.
Giordano
,
F.
Villeneuve
, and
L.
Mathieu
, eds., Annecy, Glasgow, UK, Aug. 24–27, pp.
489
500
.
17.
Walter
,
M.
,
Sprügel
,
T.
, and
Wartzack
,
S.
,
2013
, “
Tolerance Analysis of Systems in Motion Taking Into Account Interactions Between Deviations
,”
Proc. Inst. Mech. Eng., Part B
,
227
(
5
), pp.
709
719
.
18.
Ziegler
,
P.
, and
Wartzack
,
S.
,
2014
, “
Sensitivity Analysis of Tolerances Which Restrict Multiple Similar Features
,”
First International Symposium on Robust Design
, Lyngby, Denmark, Aug. 14–15, pp.
91
101
.http://proceedings.dtu.dk/fedora/repository/dtu:2179/OBJ/S06_PosterSession_Ziegler.pdf
19.
Schleich
,
B.
, and
Wartzack
,
S.
,
2015
, “
A Generic Approach to Sensitivity Analysis in Geometric Variations Management
,”
20th International Conference on Engineering Design
(
ICED
), Milano, Italy, July 27–30, pp.
343
352
.https://www.designsociety.org/publication/37764/A+GENERIC+APPROACH+TO+SENSITIVITY+ANALYSIS+IN+GEOMETRIC+VARIATIONS+MANAGEMENT
20.
Lin
,
C.-Y.
,
Huang
,
W.-H.
,
Jeng
,
M.-C.
, and
Doong
,
J.-L.
,
1997
, “
Study of an Assembly Tolerance Allocation Model Based on Monte Carlo Simulation
,”
J. Mater. Process. Technol.
,
70
(
1–3
), pp.
9
16
.
21.
Ziegler
,
P.
, and
Wartzack
,
S.
,
2015
, “
A Statistical Method to Identify Main Contributing Tolerances in Assemblability Studies Based on Convex Hull Techniques
,”
J. Zhejiang Univ., Sci., A
,
16
(
5
), pp.
361
370
.
22.
Cukier
,
R. I.
,
Fortuin
,
C. M.
,
Shuler
,
K. E.
,
Petschek
,
A. G.
, and
Schaibly
,
J. H.
,
1973
, “
Study of the Sensitivity of Coupled Reaction Systems to Uncertainties in Rate Coefficients—I: Theory
,”
J. Chem. Phys.
,
59
(
8
), pp.
3873
3878
.
23.
Saltelli
,
A.
,
Tarantola
,
S.
, and
Chan
,
K. P.-S.
,
1999
, “
A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output
,”
Technometrics
,
41
(
1
), pp.
39
56
.
24.
Borgonovo
,
E.
,
2007
, “
A New Uncertainty Importance Measure
,”
Reliab. Eng. Syst. Saf.
,
92
(
6
), pp.
771
784
.
25.
Plischke
,
E.
,
Borgonovo
,
E.
, and
Smith
,
C. L.
,
2013
, “
Global Sensitivity Measures From Given Data
,”
Eur. J. Oper. Res.
,
226
(
3
), pp.
536
550
.
26.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
27.
Zadeh
,
L. A.
,
1965
, “
Fuzzy Sets
,”
Inf. Control
,
8
(
3
), pp.
338
353
.
28.
Dubois
,
D. J.
, and
Prade
,
H. M.
,
1994
,
Fuzzy Sets and Systems: Theory and Applications
,
6th ed.
,
Academic Press
,
New York
.
29.
Charles
,
G. G.
,
1994
, “
A Second-Order Method for Assembly Tolerance Analysis
,” M.S. thesis, Brigham Young University, Provo, UT.
30.
Heling
,
B.
,
Oberleiter
,
T.
,
Schleich
,
B.
,
Willner
,
K.
, and
Wartzack
,
S.
,
2017
, “
Comparison of Different Sensitivity Analysis Methods in the Context of Dimensional Management
,”
ASME
Paper No. IMECE2017-70550.
You do not currently have access to this content.