Six explosive experiments were performed in October 2014 and February of 2015 at the Munitions Directorate of the Air Force Research Laboratory with the goal of providing validation-quality data for particle drag models in the extreme regime of detonation. Three repeated single particle experiments and three particle array experiments were conducted. The time-varying position of the particles was captured within the explosive products by X-ray imaging. The contact front and shock locations were captured by high-speed photography to provide information on the early time gas behavior. Since these experiments were performed in the past and could not be repeated, we faced an interesting challenge of quantifying and reducing uncertainty through a detailed investigation of the experimental setup and operating conditions. This paper presents the results from these unique experiments, which can serve as benchmark for future modeling, and also our effort to reduce uncertainty, which we dub forensic uncertainty quantification (FUQ).

References

References
1.
Crowe
,
C.
,
Schwarzkopf
,
J.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
2011
,
Multiphase Flows With Droplets and Particles
,
2nd ed.
,
CRC Press
,
Boca Raton, FL
.
2.
Loth
,
E.
,
2008
, “
Compressibility and Rarefaction Effects on Drag of a Spherical Particle
,”
AIAA J.
,
46
(
9
), pp.
2219
2228
.
3.
Parmar
,
M.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2010
, “
Improved Drag Correlation for Spheres and Application to Shock-Tube Experiments
,”
AIAA J.
,
48
(
6
), pp.
1273
1276
.
4.
Clift
,
R.
, and
Gauvin
,
W. H.
,
1970
, “
The Motion of Particles in Turbulent Gas Streams
,”
Proc. Chemeca'70
,
1
, pp.
14
28
.
5.
Bailey
,
A.
, and
Starr
,
R.
,
1976
, “
Sphere Drag at Transonic Speeds and High Reynolds Numbers
,”
AIAA J.
,
14
(
11
), p.
1631
.
6.
Jourdan
,
G.
,
Houas
,
L.
,
Igra
,
O.
,
Estivalezes
,
J.-L.
,
Devals
,
C.
, and
Meshkov
,
E.
,
2007
, “
Drag Coefficient of a Sphere in a Non-Stationary Flow: New Results
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
463
(
2088
), pp.
3323
3345
.
7.
Hughes
,
K.
,
Diggs
,
A.
,
Littrell
,
D.
,
Balachandar
,
S.
,
Haftka
,
R. T.
,
Kim
,
N. H.
,
Park
,
C.
, and
DelCambre
,
M.
,
2017
, “
Uncertainty Quantification of Experiments on a Small Number of Explosively-Driven Particles
,”
AIAA
Paper No. 2017-1463.
8.
Ling
,
Y.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2011
, “
Importance of Unsteady Contributions to Force and Heating for Particles in Compressible Flow—Part 1: Modeling and Analysis for Shock-Particle Interaction
,”
Int. J. Muhiphase Flow
,
37
(
9
), pp.
1026
1044
.
9.
Ling
,
Y.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2011
, “
Importance of Unsteady Contributions to Force and Heating for Particles in Compressible Flows—Part 2: Application to Particle Dispersal by Blast Waves
,”
Int. J. Multiph. Flow
,
37
(
9
), pp.
1013
1025
.
10.
Sun
,
M.
,
Saito
,
T.
,
Takayama
,
K.
, and
Tanno
,
H.
,
2005
, “
Unsteady Drag on a Sphere by Shock Wave Loading
,”
Shock Waves
,
14
(
1–2
), pp.
3
9
.
11.
Tanno
,
H.
,
Itoh
,
K.
,
Saito
,
T.
,
Abe
,
A.
, and
Takayama
,
K.
,
2003
, “
Interaction of a Shock With a Sphere Suspended in a Vertical Shock Tube
,”
Shock Waves
,
13
(
3
), pp.
91
200
.
12.
Tanno
,
H.
,
Komuro
,
T.
,
Takahashi
,
M.
,
Takayama
,
K.
,
Ojima
,
H.
, and
Onaya
,
S.
,
2004
, “
Unsteady Force Measurement Technique in Shock Tubes
,”
Rev. Sci. Instrum.
,
75
(
2
), pp.
532
536
.
13.
Bredin
,
M.
, and
Skews
,
B.
,
2007
, “
Drag Measurement in Unsteady Compressible Flow—Part 1: An Unsteady Flow Facility and Stress Wave Drag Balance
,”
RD J. South Afr. Inst. Mech. Eng.
,
23
(
1
), pp.
1
10
.
14.
Parmar
,
M.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2009
, “
Modeling of the Unsteady Force for Shock-Particle Interaction
,”
Shock Waves
,
19
(
4
), pp.
317
329
.
15.
Britan
,
A.
,
Elperin
,
T.
,
Igra
,
O.
, and
Jiang
,
J.
,
1995
, “
Acceleration of a Sphere Behind Planar Shock Waves
,”
Exp. Fluids
,
20
(
2
), pp.
84
90
.
16.
Wagner
,
J. L.
,
Beresh
,
S. J.
,
Kearney
,
S. P.
,
Pruett
,
B. O. M.
, and
Wright
,
E. K.
,
2012
, “
Shock Tube Investigation of Quasi-Steady Drag in Shock-Particle Interactions
,”
Phys. Fluids
,
24
(
12
), p.
123031
.
17.
Bordoloi
,
A. D.
,
Martinez
,
A. A.
, and
Prestridge
,
K.
,
2017
, “
Relaxation Drag History of Shock Accelerated Microparticles
,”
J. Fluid Mech.
,
823
, p.
R4
.
18.
Zhang
,
F.
,
Frost
,
D.
,
Thibault
,
P.
, and
Murray
,
S.
,
2001
, “
Explosive Dispersal of Solid Particles
,”
Shock Waves
,
10
(
6
), pp.
431
443
.
19.
Frost
,
D. L.
,
Zarei
,
Z.
, and
Zhang
,
F.
,
2005
, “
Instability of Combustion Products Interface From Detonation of Heterogeneous Explosives
,”
Int. Colloq. Dyn. Explos. React. Syst.
, pp.
1
6
.
20.
Frost
,
D. L.
,
Ornthanalai
,
C.
,
Zarei
,
Z.
,
Tanguay
,
V.
, and
Zhang
,
F.
,
2007
, “
Particle Momentum Effects From the Detonation of Heterogeneous Explosives
,”
J. Appl. Phys.
,
101
(
11
), p.
113529
.
21.
Frost
,
D. L.
,
Grégoire
,
Y.
,
Petel
,
O.
,
Goroshin
,
S.
, and
Zhang
,
F.
,
2012
, “
Particle Jet Formation During Explosive Dispersal of Solid Particles
,”
Phys. Fluids
,
24
(
9
), p.
091109
.
22.
Maxey
,
M. R.
, and
Riley
,
J. J.
,
1983
, “
Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow
,”
Phys. Fluids
,
26
(
4
), p.
883
.
23.
Gatignol
,
R.
,
1983
, “
The Faxén Formulas for a Rigid Particle in an Unsteady Non-Uniform Stokes-Flow
,”
J. Méc. Théor. Appl.
,
2
(
2
), pp.
143
160
.
24.
Parmar
,
M.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2011
, “
Generalized Basset-Boussinesq-Oseen Equation for Unsteady Forces on a Sphere in a Compressible Flow
,”
Phys. Rev. Lett.
,
106
(
8
), pp.
2
5
.
25.
Parmar
,
M.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2012
, “
Equation of Motion for a Sphere in Non-Uniform Compressible Flows
,”
J. Fluid Mech.
,
699
(
5
), pp.
352
375
.
26.
Annamalai
,
S.
, and
Balachandar
,
S.
,
2017
, “
Faxén Form of Time-Domain Force on a Sphere in Unsteady Spatially Varying Viscous Compressible Flows
,”
J. Fluid Mech.
,
816
, pp.
381
411
.
27.
Dobratz
,
B.
, and
Crawford
,
P.
,
1985
,
LLNL Explosives Handbook - Properties of Chemical Explosives and Explosive Stimulants
,
Livermore, CA
.
28.
Groover
,
M.
,
1999
,
Fundamentals of Modern Manufacturing: Materials, Processes, and Systems
,
Wiley
,
New York
.
You do not currently have access to this content.