Adverse events due to flow-induced blood damage remain a serious problem for blood pumps as cardiac support systems. The numerical prediction of blood damage via computational fluid dynamics (CFD) is a helpful tool for the design and optimization of reliable pumps. Blood damage prediction models primarily are based on the acting shear stresses, which are calculated by solving the Navier–Stokes equations on computational grids. The purpose of this paper is to analyze the influence of the spatial discretization and the associated discretization error on the shear stress calculation in a blood pump in comparison to other important flow quantities like the pressure head of the pump. Therefore, CFD analysis using seven unsteady Reynolds-averaged Navier–Stokes (URANS) simulations was performed. Two simple stress calculation indicators were applied to estimate the influence of the discretization on the results using an approach to calculate numerical uncertainties, which indicates discretization errors. For the finest grid with 19 × 106 elements, numerical uncertainties up to 20% for shear stresses were determined, while the pressure heads show smaller uncertainties with a maximum of 4.8%. No grid-independent solution for velocity gradient-dependent variables could be obtained on a grid size that is comparable to mesh sizes in state-of-the-art blood pump studies. It can be concluded that the grid size has a major influence on the shear stress calculation, and therefore, the potential blood damage prediction, and that the quantification of this error should always be taken into account.

References

References
1.
Graefe
,
R.
,
Henseler
,
A.
, and
Steinseifer
,
U.
,
2016
, “
Multivariate Assessment of the Effect of Pump Design and Pump Gap Design Parameters on Blood Trauma
,”
Artif. Organs
,
40
(
6
), pp.
568
576
.
2.
Buja
,
L. M.
, and
Butany
,
J.
, eds.,
2016
,
Cardiovascular Pathology
,
4th ed.
,
Elsevier
,
London, UK
.
3.
Koliopoulou
,
A.
,
McKellar
,
S. H.
,
Rondina
,
M.
, and
Selzman
,
C. H.
,
2016
, “
Bleeding and Thrombosis in Chronic Ventricular Assist Device Therapy: Focus on Platelets
,”
Curr. Opin. Cardiol.
,
31
(
3
), pp.
299
307
.
4.
Leone
,
O.
,
2017
,
The Pathology of Cardiac Transplantation: A Clinical and Pathological Perspective
,
Springer
,
Cham, Switzerland
.
5.
Pagani
,
F. D.
,
Miller
,
L. W.
,
Russell
,
S. D.
,
Aaronson
,
K. D.
,
John
,
R.
,
Boyle
,
A. J.
,
Conte
,
J. V.
,
Bogaev
,
R. C.
,
MacGillivray
,
T. E.
,
Naka
,
Y.
,
Mancini
,
D.
,
Massey
,
H. T.
,
Chen
,
L.
,
Klodell
,
C. T.
,
Aranda
,
J. M.
,
Moazami
,
N.
,
Ewald
,
G. A.
,
Farrar
,
D. J.
, and
Frazier
,
O. H.
,
2009
, “
Extended Mechanical Circulatory Support With a Continuous-Flow Rotary Left Ventricular Assist Device
,”
J. Am. Coll. Cardiol.
,
54
(
4
), pp.
312
321
.
6.
Olia
,
S. E.
,
Maul
,
T. M.
,
Antaki
,
J. F.
, and
Kameneva
,
M. V.
,
2016
, “
Mechanical Blood Trauma in Assisted Circulation: Sublethal RBC Damage Preceding Hemolysis
,”
Int. J. Artif. Organs
,
39
(
4
), pp.
150
159
.
7.
Thamsen
,
B.
,
Granneger
,
M.
, and
Kretzscher
,
U.
,
2016
, “
Blood Damage in Ventricular Assist Devices
,”
Int. J. Artif Organs
,
39
(
4
), pp.
147
149
.
8.
Haeck
,
M. L. A.
,
Hoogslag
,
G. E.
,
Rodrigo
,
S. F.
,
Atsma
,
D. E.
,
Klautz
,
R. J.
,
van der Wall
,
E. E.
,
Schalij
,
M. J.
, and
Verwey
,
H. F.
,
2012
, “
Treatment Options in End-Stage Heart Failure: Where to Go From Here?
,”
Neth. Heart J.
,
20
(
4
), pp.
167
175
.
9.
Taskin
,
M. E.
,
Fraser
,
K. H.
,
Zhang
,
T.
,
Gellman
,
B.
,
Fleischli
,
A.
,
Dasse
,
K. A.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
, and.,
2010
, “
Computational Characterization of Flow and Hemolytic Performance of the UltraMag Blood Pump for Circulatory Support
,”
Artif. Organs
,
34
(
12
), pp.
1099
1113
.
10.
Fraser
,
K. H.
,
Zhang
,
T.
,
Taskin
,
M. E.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2012
, “
A Quantitative Comparison of Mechanical Blood Damage Parameters in Rotary Ventricular Assist Devices: Shear Stress, Exposure Time and Hemolysis Index
,”
ASME J. Biomech. Eng.
,
134
(
8
), p.
81002
.
11.
Farinas
,
M.-I.
,
Garon
,
A.
, and
Lacasse
,
D.
,
2006
, “
Asymptotically Consistent Numerical Approximation of Hemolysis
,”
ASME J. Biomech. Eng.
,
128
(
5
), pp. 688–696.
12.
Arwatz
,
G.
, and
Smits
,
A. J.
,
2013
, “
A Viscoelastic Model of Shear-Induced Hemolysis in Laminar Flow
,”
Biorheology
,
50
(
1–2
), pp.
45
55
.
13.
Goubergrits
,
L.
, and
Affeld
,
K.
,
2004
, “
Numerical Estimation of Blood Damage in Artificial Organs
,”
Artif. Organs
,
28
(
5
), pp.
499
507
.
14.
Grigioni
,
M.
,
Daniele
,
C.
,
Morbiducci
,
U.
,
D'Avenio
,
G.
,
Di Benedetto
,
G.
, and
Barbaro
,
V.
,
2004
, “
The Power-Law Mathematical Model for Blood Damage Prediction: Analytical Developments and Physical Inconsistencies
,”
Artif. Organs
,
28
(
5
), pp.
467
475
.
15.
Hallier
,
S.
,
Torner
,
B.
,
Kumar
,
J.
, and
Wurm
,
F.-H.
,
2016
, “
Miniaturization of an Implantable Pump for Heart Support
,” International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (
ISROMAC
'16), Honolulu, HI, Apr. 10–15.http://isromac-isimet.univ-lille1.fr/upload_dir/finalpaper/264.finalpaper.pdf
16.
Throckmorton
,
A. L.
,
Lim
,
D. S.
,
McCulloch
,
M. A.
,
Jiang
,
W.
,
Song
,
X.
,
Allaire
,
P. E.
,
Wood
,
H. G.
, and
Olsen
,
D. B.
,
2005
, “
Computational Design and Experimental Performance Testing of an Axial-Flow Pediatric Ventricular Assist Device
,”
ASAIO J.
,
51
(
5
), pp.
629
635
.
17.
Kido
,
K.
,
Hoshi
,
H.
,
Watanabe
,
N.
,
Kataoka
,
H.
,
Ohuchi
,
K.
,
Asama
,
J.
,
Shinshi
,
T.
,
Yoshikawa
,
M.
, and
Takatani
,
S.
,
2006
, “
Computational Fluid Dynamics Analysis of the Pediatric Tiny Centrifugal Blood Pump (TinyPump)
,”
Artif. Organs
,
30
(
5
), pp.
392
399
.
18.
Chen
,
Z.
,
Jena
,
S. K.
,
Giridharan
,
G. A.
,
Koenig
,
S. C.
,
Slaughter
,
M. S.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2018
, “
Flow Features and Device-Induced Blood Trauma in CF-VADs Under a Pulsatile Blood Flow Condition: A CFD Comparative Study
,”
Int. J. Numer. Methods Biomed. Eng.
,
34
(
2
), (epub).
19.
Schüle
,
C. Y.
,
Thamsen
,
B.
,
Blumel
,
B.
,
Lommel
,
M.
,
Karakaya
,
T.
,
Paschereit
,
C. O.
,
Affeld
,
K.
, and
Kertzscher
,
U.
,
2016
, “
Experimental and Numerical Investigation of an Axial Rotary Blood Pump
,”
Artif. Organs
,
40
(
11
), pp.
192
202
.
20.
Fraser
,
K. H.
,
Taskin
,
M. E.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2011
, “
The Use of Computational Fluid Dynamics in the Development of Ventricular Assist Devices
,”
Med. Eng. Phys.
,
33
(
3
), pp.
263
280
.
21.
ANSYS, Inc.
,
2017
,
ANSYS CFX–Modeling Guide 18.0: Chap. 15.3.2
,
ANSYS
, Canonsburg, PA.
22.
ANSYS, Inc.
,
2017
,
ANSYS CFX–Theory Guide 18.0: Chap. 11.1
,
ANSYS
, Canonsburg, PA.
23.
ANSYS, Inc.
, 2017,
ANSYS CFX–Theory Guide 18.0: Chap. 11.1.1.4.5
,
ANSYS
, Canonsburg, PA.
24.
Huang
,
Z. J.
,
Merkle
,
C. L.
,
Abdallah
,
S.
, and
Tarbell
,
J. M.
,
1994
, “
Numerical Simulation of Unsteady Laminar Flow Through a Tilting Disk Heart Valve: Prediction of Vortex Shedding
,”
J. Biomech.
,
27
(
4
), pp.
391
402
.
25.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
26.
Smirnov
,
P. E.
, and
Menter
,
F. R.
,
2009
, “
Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart–Shur Correction Term
,”
ASME J. Turbomach.
,
131
(
4
), p. 041010.
27.
Menter
,
F. R.
,
Langtry
,
R.
, and
Völker
,
S.
,
2006
, “
Transition Modelling for General Purpose CFD Codes
,”
Flow Turbul. Combust
,
77
(
1–4
), pp.
277
303
.
28.
ANSYS Inc.
,
2017
,
ANSYS CFX–Theory Guide 18.0: Chap. 11.1.1.4.3
,
ANSYS
, Canonsburg, PA.
29.
Wurzinger
,
L. J.
,
Opitz
,
R.
, and
Eckstein
,
H.
,
1986
, “
Mechanical Bloodtrauma. An Overview
,”
Angeiologie
,
38
(
3
), pp.
81
97
.
30.
Giersiepen
,
M.
,
Wurzinger
,
L. J.
,
Opitz
,
R.
, and
Reul
,
H.
,
1990
, “
Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses—In Vitro Comparison of 25 Aortic Valves
,”
Int. J. Artif. Organs
,
13
(
5
), pp.
300
306
.
31.
Garon
,
A.
, and
Farinas
,
M.-I.
,
2004
, “
Fast Three-Dimensional Numerical Hemolysis Approximation
,”
Artif. Organs
,
28
(
11
), pp.
1016
1025
.
32.
Taskin
,
M. E.
,
Fraser
,
K. H.
,
Zhang
,
T.
,
Wu
,
C.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2012
, “
Evaluation of Eulerian and Lagrangian Models for Hemolysis Estimation
,”
ASAIO J.
,
58
(
4
), pp.
363
372
.
33.
Yu
,
H.
,
Engel
,
S.
,
Janiga
,
G.
, and
Thévenin
,
D.
,
2017
, “
A Review of Hemolysis Prediction Models for Computational Fluid Dynamics
,”
Artif. Organs
,
41
(
7
), pp.
603
621
.
34.
Casa
,
L. D. C.
, and
Ku
,
D. N.
,
2017
, “
Thrombus Formation at High Shear Rates
,”
Annu. Rev. Biomed. Eng.
,
19
(
1
), pp.
415
433
.
35.
Hellums
,
J. D.
,
1994
, “
Biorheology in Thrombosis Research
,”
Annu. Biomed. Eng.
,
22
(
5
), pp.
445
455
.
36.
Thamsen
,
B.
,
Blumel
,
B.
,
Schaller
,
J.
,
Paschereit
,
C. O.
,
Affeld
,
K.
,
Goubergrits
,
L.
, and
Kertzscher
,
U.
,
2015
, “
Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps
,”
Artif. Organs
,
39
(
8
), pp.
651
659
.
37.
Eça
,
L. R. C.
, and
Hoekstra
,
M.
,
2014
, “
A Procedure for the Estimation of the Numerical Uncertainty of CFD Calculations Based on Grid Refinement Studies
,”
J. Comput. Phys.
,
262
, pp.
104
130
.
38.
Guelich
,
J. F.
,
2010
,
Kreiselpumpen: Handbuch Für Entwicklung, Anlagenplanung Und Betrieb
,
3rd ed.
,
Springer
,
Berlin/Heidelberg
.
39.
Roache
,
P. J.
,
1998
,
Verification and Validation in Computational Science and Engineering
,
Hermosa Publishers
,
Albuquerque, NM
.
40.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
, pp.
126
160
.
41.
Stewart
,
S. F. C.
,
Paterson
,
E. G.
,
Burgreen
,
G. W.
,
Hariharan
,
P.
,
Giarra
,
M.
,
Reddy
,
V.
,
Day
,
S. W.
,
Manning
,
K. B.
,
Deutsch
,
S.
,
Berman
,
M. R.
,
Myers
,
M. R.
, and
Malinauskas
,
R. A.
,
2012
, “
Assessment of CFD Performance in Simulations of an Idealized Medical Device: Results of FDA's First Computational Interlaboratory Study
,”
Cardiovasc. Eng. Tech.
,
3
(
2
), pp.
139
160
.
42.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
,
1999
, “
Direct Numerical Simulation of Turbulent Channel Flow Up to Reτ = 590
,”
Phys. Fluids
,
11
(
4
), pp.
943
945
.
43.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
305
316
.
44.
Torner
,
B.
,
Konnigk
,
L.
,
Hallier
,
S.
,
Kumar
,
J.
,
Witte
,
M.
, and
Wurm
,
F.-H.
,
2018
, “
Large Eddy Simulation in a Rotary Blood Pump: Viscous Shear Stress Computation and Comparison With Unsteady Reynolds-Averaged Navier-Stokes Simulation
,”
Int. J. Artif. Organs
,
41
(
11
), pp.
752
763
.
You do not currently have access to this content.