When making computational simulation predictions of multiphysics engineering systems, sources of uncertainty in the prediction need to be acknowledged and included in the analysis within the current paradigm of striving for simulation credibility. A thermal analysis of an aerospace geometry was performed at Sandia National Laboratories. For this analysis, a verification, validation, and uncertainty quantification (VVUQ) workflow provided structure for the analysis, resulting in the quantification of significant uncertainty sources including spatial numerical error and material property parametric uncertainty. It was hypothesized that the parametric uncertainty and numerical errors were independent and separable for this application. This hypothesis was supported by performing uncertainty quantification (UQ) simulations at multiple mesh resolutions, while being limited by resources to minimize the number of medium and high resolution simulations. Based on this supported hypothesis, a prediction including parametric uncertainty and a systematic mesh bias is used to make a margin assessment that avoids unnecessary uncertainty obscuring the results and optimizes use of computing resources.

References

References
1.
Sierra Core Team
,
2017
,
Sierra Thermal/Fluids Code
,
Sierra Core Team
,
Albuquerque, NM
.
2.
Helton
,
J. C.
,
Johnson
,
J. D.
, and
Oberkampf
,
W. L.
,
2006
, “
Probability of Loss of Assured Safety in Temperature Dependent Systems With Multiple Weak and Strong Links
,”
Reliab. Eng. Syst. Saf.
,
91
, pp.
320
348
.
3.
Helton
,
J. C.
,
Pilch
,
M.
, and
Sallaberry
,
C. J.
,
2014
, “
Probability of Loss of Assured Safety in Systems With Multiple Time-Dependent Failure Modes: Representations With Aleatory and Epistemic Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
124
, pp.
171
200
.
4.
Oberkampf
,
W. L.
,
Pilch
,
M.
, and
Trucano
,
T. G.
,
2007
, “
Predictive Capability Maturity Model for Computational Modeling and Simulation
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No.
SAND2007-5948
.https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2007/075948.pdf
5.
VV/UQ, Credibility Processes
,
2016
, “
What is PIRT?
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND2016-6466.
6.
VV/UQ, Credibility Processes
,
2016
, “
How to PIRT
,” Technical Report, Sandia National Laboratories, Albuquerque, NM, Report No. SAND2016-6465.
7.
Sankararaman
,
S.
, and
Mahadevan
,
S.
,
2012
, “
Comprehensive Framework for Integration of Calibration, Verification, and Validation
,”
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Honolulu, HI
,
Apr. 23–26
, p.
1367
.
8.
Minana
,
M. A.
,
Turgeon
,
J. L.
,
Pilch
,
M.
, and
Hackney
,
P.
,
2008
, “
Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan—Part 1: ASC Software Quality Engineering Practices Version 3.0
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No.
SAND2008-5517
https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2008/085517.pdf.
9.
Hills
,
R. G.
,
2013
, “
Roll-Up of Validation Results to a Target Application
,” Technical Report, Sandia National Laboratories, Report No. SAND2013-7424.
10.
Sargsyan
,
K.
,
Najm
,
H. N.
, and
Ghanem
,
R.
,
2015
, “
On the Statistical Calibration of Physical Models
,”
Int. J. Chem. Kinet.
,
47
(
4
), pp.
246
276
.
11.
Urbina
,
A.
,
Mahadevan
,
S.
, and
Paez
,
T. L.
, 2012, “
A Bayes Network Approach to Uncertainty Quantification in Hierarchically Developed Computational Models
,”
Int. J. Uncertainty Quantif.
,
2
(
2
), pp.
173
193
.
12.
Oliver
,
T. A.
,
Malaya
,
N.
,
Ulerich
,
R.
, and
Moser
,
R. D.
,
2014
, “
Estimating Uncertainties in Statistics Computed From Direct Numerical Simulation
,”
Phys. Fluids
,
26
(
3
), p.
035101
.
13.
Rebba
,
R.
,
Mahadevan
,
S.
, and
Huang
,
S.
,
2006
, “
Validation and Error Estimation of Computational Models
,”
Reliab. Eng. Syst. Saf.
,
91
(
10–11
), pp.
1390
1297
.
14.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.: Ser. B Stat. Methodol.
,
63
(
3
), pp.
425
464
.
15.
Mullins
,
J.
, and
Mahadevan
,
S.
,
2016
, “
Bayesian Uncertainty Integration for Model Calibration, Validation, and Prediction
,”
ASME J. Verif. Valid. Uncertainty Quantif.
,
1
(
1
), p.
011006
.
16.
VV 10,
2006
, “
Guide for Verification and Validation in Computational Solid Mechanics
,” The American Society of Mechanical Engineers, New York, Standard No. ASME V&V 10-2006.
17.
VV 20,
2009
, “
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,” The American Society of Mechanical Engineers, New York, Standard No. ASME V&V 20-2009.
18.
SIERRA Thermal/Fluid Development Team
,
2017
, “
SIERRA Multimechanics Module: Aria User Manual—Version 4.44
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND2017-3776.
19.
SIERRA Thermal/Fluid Development Team
,
2016
, “
SIERRA Multimechanics Module: Aria Theory Manual—Version 4.42
,” Sandia National Laboratories, Technical Report No. SAND2016-10167.
20.
Young
,
T. R.
,
1980
, “
CHEMEQ—A Subroutine for Solving Stiff Ordinary Differential Equations
,” Naval Research Laboratory, Washington, DC, NRL Memorandum Report No. 4091.
21.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
Cambridge, NY
.
22.
Richardson
,
L. F.
,
1911
, “
The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, With an Application to the Stresses in a Masonary Dam
,”
Philos. Trans. R. Soc. London: Ser. A
,
210
(
459–470
), pp.
307
357
.
23.
Roy
,
C. J.
,
2005
, “
Review of Code and Solution Verification Procedures for Computational Simulation
,”
J. Comput. Phys.
,
205
(
1
), pp.
131
156
.
24.
Roache
,
P. J.
,
1998
,
Verification and Validation in Computational Science and Engineering
,
Hermosa Publishers
,
Albuquerque, NM
.
25.
Rider
,
W. J.
,
Kamm
,
J. R.
, and
Weirs
,
V. G.
,
2016
, “
Procedures for Calculation Verification: Simulation Credibility: Advances in Verification, Validation, and Uncertainty Quantification
,” NASA/JANNAF, Moffett Field, CA, Report Nos. NASA/TP--2016-219422 and JANNAF/GL--2016-0001.
26.
Helton
,
J. C.
,
Johnson
,
J. D.
, and
Oberkampf
,
W. L.
,
2004
, “
An Exploration of Alternative Approaches to the Representation of Uncertainty in Model Predictions
,”
Reliab. Eng. Syst. Saf.
,
85
(
1–3
), pp.
39
71
.
27.
Helton
,
J. C.
, and
Johnson
,
J. D.
,
2011
, “
Quantification of Margins and Uncertainties: Alternative Representations of Epistemic Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
96
, pp.
1034
1052
.
28.
Helton
,
J. C.
, and
Sallaberry
,
C. J.
,
2012
, “
Uncertainty and Sensitivity Analysis: From Regulatory Requirements to Conceptual Structure and Computational Implementation
,”
IFIP Adv. Inf. Commun. Technol.
,
377
, pp.
60
76
.
29.
Eldred
,
M. S.
,
Swiler
,
L. P.
, and
Tang
,
G.
,
2011
, “
Mixed Aleatory-Epistemic Uncertainty Quantification With Stochastic Expansions and Optimization-Based Interval Estimation
,”
Reliab. Eng. Syst. Saf.
,
96
(
9
), pp.
1092
1113
.
30.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.
31.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
32.
Iman
,
R. L.
, and
Conover
,
W.-J.
,
1982
, “
A Distribution-Free Approach to Inducing Rank Correlation Among Input Variables
,”
Commun. Stat.-Simul. Comput.
,
11
(
3
), pp.
311
334
.
33.
Sallaberry
,
C. J.
,
Helton
,
J. C.
, and
Hora
,
S. C.
,
2008
, “
Extension of Latin Hypercube Samples With Correlated Variables
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
1047
1059
.
34.
Iman
,
R. L.
,
1981
, “
Statistical Methods for Including Uncertainties Associated With the Geologic Isolation of Radioactive Waste Which Allow for a Comparison With Licensing Criteria
,”
Directorate of Technical Information and Document Control Proceedings of the Symposium on Uncertainties Associated With the Regulation of the Geologic Disposal of High-Level Radioactive Waste
,
Gatlinburg, TN
,
Mar. 9–13
, pp.
145
158
.
35.
Adams
,
B. M.
,
Ebeidad
,
M. S.
,
Eldred
,
M. S.
,
Geraci
,
G.
,
Jakeman
,
J. D.
,
Maupin
,
K. A.
,
Monschke
,
J. A.
,
Swiler
,
L. P.
,
Stephens
,
J. A.
,
Vigil
,
D. N.
,
Wildey
,
T. M.
,
Bohnhoff
,
W. J.
,
Dalbey
,
K. R.
,
Eddy
,
J. P.
,
Hooper
,
R. W.
,
Hu
,
K. T.
,
Hough
,
P. D.
,
Ridgway
,
E. M.
, and
Rushdi
,
A.
,
2016
, “
Dakota, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.5 User's Manual
,” Sandia National Laboratories, Technical Report No. SAND2014-4633.
36.
Helton
,
J. C.
,
Johnson
,
J. D.
,
Sallaberry
,
C. J.
, and
Storlie
,
C. B.
,
2006
, “
Survey of Sampling-Based Methods for Uncertainty and Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
91
, pp.
1175
1209
.
37.
Borgonovo
,
E.
, and
Plischke
,
E.
,
2016
, “
Sensitivity Analysis: A Review of Recent Advances
,”
Eur. J. Oper. Res.
,
248
(
3
), pp.
869
887
.
38.
Wei
,
P.
,
Lu
,
Z.
, and
Song
,
J.
,
2015
, “
Variable Importance Analysis: A Comprehensive Review
,”
Reliab. Eng. Syst. Saf.
,
142
, pp.
399
432
.
39.
Storlie
,
C. B.
,
Swiler
,
L. P.
,
Helton
,
J. C.
, and
Sallaberry
,
C. J.
,
2009
, “
Implementation and Evaluation of Nonparametric Regression Procedures for Sensitivity Analysis of Computationally Demanding Models
,”
Reliab. Eng. Syst. Saf.
,
94
(
11
), pp.
1735
1763
.
40.
Storlie
,
C. B.
, and
Helton
,
J. C.
,
2008
, “
Multiple Predictor Smoothing Methods for Sensitivity Analysis: Description of Techniques
,”
Reliab. Eng. Syst. Saf.
,
93
(
1
), pp.
28
54
.
41.
Saltelli
,
A.
,
Chan
,
K.
, and
Scott
,
E. M.
, eds.,
2000
,
Sensitivity Analysis
, Vol.
1
,
Wiley
,
New York
.
42.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2008
,
Global Sensitivity Analysis: The Primer
,
Wiley
,
West Sussex, UK
.
43.
Tang
,
G.
,
Iaccarino, G.
, and
Eldred
,
M. S.
,
2010
, “
Global Sensitivity Analysis for Stochastic Collocation Expansion
,” AIAA Paper No. 2010-2922.
44.
Helton
,
J. C.
,
2011
, “
Quantification of Margins and Uncertainties: Conceptual and Computational Basis
,”
Reliab. Eng. Syst. Saf.
,
96
, pp.
976
1013
.
45.
Helton
,
J. C.
, and
Pilch
,
M.
,
2011
, “
Quantification of Margins and Uncertainties
,”
Reliab. Eng. Syst. Saf.
,
96
(
9
), pp.
959
964
.
46.
Newcomer
,
J. T.
,
2012
, “
A New Approach to Quantification of Margins and Uncertainties for Physical Simulation Data
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No.
SAND2012-7912
.https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2012/127912.pdf
47.
Gartling
,
D. K.
, and
Hogan
,
R. E.
,
1994
, “
COYOTE II—A Finite Element Computer Program for Nonlinear Heat Conduction Problems—Part I: Theoretical Background
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND94-1173.
48.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
2nd ed.
,
Clarendon Press
,
Oxford, UK
.
49.
Howell
,
J. R.
,
Siegel
,
R.
, and
Mengüç
,
M. P.
,
2011
,
Thermal Radiation Heat Transfer
,
5th ed.
,
CRC Press
, Boca Raton, FL.
50.
Notz
,
P. K.
,
Subia
,
S. R.
,
Hopkins
,
M. M.
,
Moffat
,
H. K.
, and
Noble
,
D. R.
,
2007
, “
Aria 1.5: User Manual
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND2007-2734.
51.
Mott
,
D. R.
,
Oran
,
E. S.
, and
van Leer
,
B.
,
2000
, “
A Quasi-Steady-State Solver for the Stiff Ordinary Differential Equations of Reaction Kinetics
,”
J. Comput. Phys.
,
164
(
2
), pp.
407
428
.
This content is only available via PDF.
You do not currently have access to this content.