Verification and validation (V&V) are necessary processes to ensure accuracy of the computational methods used to solve problems key to vast numbers of applications and industries. Simulations are essential for addressing impact cratering problems, because these problems often exceed experimental capabilities. Here, we show that the free Lagrange (FLAG) hydrocode, developed at Los Alamos National Laboratory (Los Alamos, NM), can be used for impact cratering simulations by verifying FLAG against two analytical models of aluminum-on-aluminum impacts at different impact velocities and validating FLAG against a glass-into-water laboratory impact experiment. Our verification results show good agreement with the theoretical maximum pressures, with relative errors as low in magnitude as 1.00%. Our validation results demonstrate FLAG's ability to model various stages of impact cratering, with crater radius relative errors as low as 3.48% and crater depth relative errors as low as 0.79%. Our mesh resolution study shows that FLAG converges at resolutions low enough to reduce the required computation time from about 28 h to about 25 min. We anticipate that FLAG can be used to model larger impact cratering problems with increased accuracy and decreased computational cost on current systems relative to other hydrocodes tested by Pierazzo et al. (2008, “Validation of Numerical Codes for Impact and Explosion Cratering: Impacts on Strengthless and Metal Targets,” MAPS, 43(12), pp. 1917–1938).

References

1.
Holsapple
,
K. A.
,
1993
, “
The Scaling of Impact Processes in Planetary Sciences
,”
Annu. Rev. Earth Planet. Sci.
,
21
(
1
), pp.
333
373
.
2.
Boslough
,
M. B. E.
, and
Crawford
,
D. A.
,
2008
, “
Low-Altitude Airbursts and the Impact Threat
,”
Int. J. Impact Eng.
,
35
(
12
), pp.
1441
1448
.
3.
Ahrens
,
T. J.
, and
Harris
,
A. W.
,
1992
, “
Deflection and Fragmentation of Near-Earth Asteroids
,”
Nature
,
360
(
6403
), p.
429
.
4.
Jay Melosh
,
H.
,
1989
,
Impact Cratering: A Geologic Process
(Oxford Monographs on Geology and Geophysics, No. 11),
Oxford University Press
, New York, p.
11
.
5.
A'Hearn
,
M. F.
,
Belton
,
M. J. S.
,
Delamere
,
W. A.
,
Kissel
,
J.
,
Klaasen
,
K. P.
,
McFadden
,
L. A.
,
Meech
,
K. J.
,
Melosh
,
H. J.
,
Schultz
,
P. H.
,
Sunshine
,
J. M.
,
Thomas
,
P. C.
,
Veverka
,
J.
,
Yeomans
,
D. K.
,
Baca
,
M. W.
,
Busko
,
I.
,
Crockett
,
C. J.
,
Collins
,
S. M.
,
Desnoyer
,
M.
,
Eberhardy
,
C. A.
,
Ernst
,
C. M.
,
Farnham
,
T. L.
,
Feaga
,
L.
,
Groussin
,
O.
,
Hampton
,
D.
,
Ipatov
,
S. I.
,
Li
,
J.-Y.
,
Lindler
,
D.
,
Lisse
,
C. M.
,
Mastrodemos
,
N.
,
Owen
,
W. M.
, Jr.,
Richardson
,
J. E.
,
Wellnitz
,
D. D.
, and
White
,
R. L.
,
2005
, “
Deep Impact: Excavating Comet Tempel 1
,”
Science
,
310
(5746), pp. 258–264.
6.
Hayne
,
P. O.
,
Greenhagen
,
B. T.
,
Foote
,
M. C.
,
Siegler
,
M. A.
,
Vasavada
,
A. R.
, and
Paige
,
D. A.
,
2010
, “
Diviner Lunar Radiometer Observations of the LCROSS Impact
,”
Science
,
330
(
6003
), pp.
477
479
.
7.
Stickle
,
A. M.
,
Rainey
,
E. S. G.
,
Bruck Syal
,
M.
,
Owen
,
J. M.
,
Miller
,
P.
,
Barnouin
,
O. S.
, and
Ernst
,
C. M.
,
2017
, “
Modeling Impact Outcomes for the Double Asteroid Redirection Test (DART) Mission
,”
Procedia Eng.
,
204
, pp.
116
123
.
8.
Jay Melosh
,
H.
,
2011
,
Planetary Surface Processes
, Vol.
13
,
Cambridge University Press
, New York.
9.
Hartmann
,
W. K.
, and
Neukum
,
G.
,
2001
, “
Cratering Chronology and the Evolution of Mars
,”
Chronology and Evolution of Mars
,
Springer
, Berlin, pp.
165
194
.
10.
Plesko
,
C. S.
,
2009
,
Automated Feature Detection and Hydrocode Modeling of Impact-Related Structures on Mars
,
University of California
,
Santa Cruz, Santa Cruz, CA
.
11.
Nolan
,
M. C.
,
Asphaug
,
E.
,
Jay Melosh
,
H.
, and
Greenberg
,
R.
,
1996
, “
Impact Craters on Asteroids: Does Gravity or Strength Control Their Size?
,”
Icarus
,
124
(
2
), pp.
359
371
.
12.
Burton
,
D.
,
1992
, “
Connectivity Structures and Differencing Techniques for Staggered-Grid Free-Lagrange Hydrodynamics
,” Lawrence Livermore National Laboratory, Livermore, CA, Report No. UCRL-JC-110555.
13.
Burton
,
D.
,
1994
, “
Consistent Finite Volume Discretization of Hydrodynamic Conservation Laws for Unstructured Grids
,” Lawrence Livermore National Laboratory, Livermore, CA, Report No. UCRL-JC-118788.
14.
Burton
,
D.
,
1994
, “
Multidimensional Discretization of Conservation Laws for Unstructured Polyhedral Grids
,” Lawrence Livermore National Laboratory, Livermore, CA, Report No.
UCRL-JC-118306
.https://www.researchgate.net/profile/Donald_Burton/publication/236423612_Multidimensional_discretization_of_conservation_laws_for_unstructured_polyhedral_grids_UCRL-JC-1l8306/links/00b7d51a7b4e04c864000000.pdf
15.
Hill
,
J. L.
,
2017
, User's Manual for FLAG version 3.6.0, The Lagrangian Applications Project, Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-CP-17-20057.
16.
Burton
,
D.
,
Morgan
,
N. R.
,
Charest
,
M. R. J.
,
Kenamond
,
M. A.
, and
Fung
,
J.
,
2018
, “
Compatible, Energy Conserving, Bounds Preserving Remap of Hydrodynamic Fields for an Extended ALE Scheme
,”
J. Comput. Phys.
,
355
, pp.
492
533
.
17.
Collins
,
G. S.
,
2002
,
An Introduction to Hydrocode Modeling
, Applied Modelling and Computation Group,
Imperial College London
, London, pp.
2
11
.
18.
Black
,
W. J.
,
Denissen
,
N. A.
, and
McFarland
,
J. A.
,
2017
, “
Evaporation Effects in Shock-Driven Multiphase Instabilities
,”
ASME J. Fluids Eng.
,
139
(
7
), p.
071204
.
19.
Fung
,
J.
,
Harrison
,
A. K.
,
Chitanvis
,
S.
, and
Margulies
,
J.
,
2013
, “
Ejecta Source and Transport Modeling in the FLAG Hydrocode
,”
Comput. Fluids
,
83
, pp.
177
186
.
20.
Cooley
,
J. H.
,
Olson
,
R. T.
, and
Oro
,
D.
,
2014
, “
Modeling and Analysis of High-Explosive Driven Perturbed Plate Experiments at Los Alamos
,”
J. Phys.: Conf. Ser.
,
500
, p.
152003
.
21.
Tonks
,
D. L.
,
Paisley
,
D. L.
,
Peralta
,
P. D.
,
Greenfield
,
S. R.
,
Byler
,
D. D.
,
Luo
,
S.
,
Swift
,
D. C.
, and
Koskelo
,
A. C.
,
2007
, “
Spallation Damage in Copper With Columnar Grains
,”
AIP Conf. Proc.
,
955
, pp.
605
608
.
22.
Scovel
,
C. A.
, and
Menikoff
,
R.
,
2009
, “
A Verification and Validation Effort for High Explosives at Los Alamos National Lab
,”
AIP Conf. Proc.
,
1195
, pp.
169
172
.
23.
Pierazzo
,
E.
,
Artemieva
,
N.
,
Asphaug
,
E.
,
Baldwin
,
E. C.
,
Cazamias
,
J.
,
Coker
,
R.
,
Collins
,
G. S.
,
Crawford
,
D. A.
,
Davison
,
T.
,
Elbeshausen
,
D.
,
Holsapple
,
K. A.
,
Housen
,
K. R.
,
Korycansky
,
D. G.
, and
Wünnemann
,
K.
,
2008
, “
Validation of Numerical Codes for Impact and Explosion Cratering: Impacts on Strengthless and Metal Targets
,”
MAPS
,
43
(
12
), pp.
1917
1938
.
24.
Shuvalov
,
V. V.
,
1999
, “
Multi-Dimensional Hydrodynamic Code SOVA for Interfacial Flows: Application to the Thermal Layer Effect
,”
Shock Waves
,
9
(
6
), pp.
381
390
.
25.
Hayes
,
J. C.
,
Norman
,
M. L.
,
Fiedler
,
R. A.
,
Bordner
,
J. O.
,
Li
,
P. S.
,
Clark
,
S. E.
, and
Mac Low
,
M.-M.
,
2006
, “
Simulating Radiating and Magnetized Flows in Multiple Dimensions With ZEUS-MP
,”
Astrophys. J. Suppl. Ser.
,
165
(
1
), p.
188
.
26.
McGlaun, M. J.,
Thompson
,
S. L.
, and
Elrick
,
M. G.
,
1990
, “
CTH: A Three-Dimensional Shock Wave Physics Code
,”
Int. J. Impact Eng.
,
10
(
1–4
), pp.
351
360
.
27.
Gittings
,
M.
,
Weaver
,
R.
,
Clover
,
M.
,
Betlach
,
T.
,
Byrne
,
N.
,
Coker
,
R.
,
Dendy
,
E.
,
Hueckstaedt
,
R.
,
New
,
K.
,
Oakes
,
R. W.
, Ranta, D., and Stefan, R.,
2008
, “
The RAGE Radiation-hydrodynamic Code
,”
Comput. Sci. Discovery
,
1
(
1
), p.
015005
.
28.
Amsden
,
A. A.
,
Ruppel
,
H. M.
, and
Hirt
,
C. W.
,
1980
, “
SALE: A Simplified ALE Computer Program for Fluid Flow at All Speeds
,” Los Alamos Scientific Lab, Los Alamos, NM, Report No. LA-8095.
29.
Ivanov
,
B. A.
,
Deniem
,
D.
, and
Neukum
,
G.
,
1997
, “
Implementation of Dynamic Strength Models Into 2D Hydrocodes: Applications for Atmospheric Breakup and Impact Cratering
,”
Int. J. Impact Eng.
,
20
(
1–5
), pp.
411
430
.
30.
Sharp
,
R.
,
2005
,
Users Manual for ALE3D: An Arbitrary Lagrange/Eulerian 3D Code System
,
Lawrence Livermore National Laboratory
, Livermore, CA.
31.
ANSYS
2005
,
AUTODYN. Theory Manual Revision 4.3
,
Century Dynamics, Concord
,
CA
.
32.
Birnbaum
,
N. K.
,
Cowler
,
M. S.
,
Itoh
,
M.
,
Katayama
,
M.
, and
Obata
,
H.
,
1987
, “
Autodyn–An Interactive Non-Linear Dynamic Analysis Program for Microcomputers Through Supercomputers
,”
Ninth International Conference Structural Mechanics Reactor Technology
, Balkema, The Netherlands, Aug. 17–21.
33.
Benz, W., and
Asphaug
,
E.
,
1995
, “
Simulations of Brittle Solids Using Smooth Particle Hydrodynamics
,”
Comput. Phys. Commun.
,
87
(
1–2
), pp.
253
265
.
34.
Meyers
,
M. A.
,
1994
,
Dynamic Behavior of Materials
,
Wiley
, New York.
35.
Lyon
,
S. P.
, and
Johnson
,
J. D.
,
1992
, “
SESAME: The Los Alamos National Laboratory Equation of State Database
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR-92-3407.
36.
Margolin
,
L. G.
,
1988
, “
A Centered Artificial Viscosity for Cells With Large Aspect Ratio
,” Lawrence Livermore National Laboratory, Livermore, CA, NASA STI/Recon, Report No. 89.
You do not currently have access to this content.