In this work, a general methodology and innovative framework to characterize and quantify representativeness uncertainty of performance indicator measurements of power generation systems is proposed. The representativeness uncertainty refers to the difference between a measurement value of a performance indicator quantity and its reference true value. It arises from the inherent variability of the quantity being measured. The main objectives of the methodology are to characterize and reduce the representativeness uncertainty by adopting numerical simulation in combination with experimental data and to improve the physical description of the measurement. The methodology is applied to an industrial case study for demonstration. The case study involves a computational fluid dynamics (CFD) simulation of an orifice plate-based mass flow rate measurement, using a commercially available package. Using the insight obtained from the CFD simulation, the representativeness uncertainty in mass flow rate measurement is quantified and the associated random uncertainties are comprehensively accounted for. Both parametric and nonparametric implementations of the methodology are illustrated. The case study also illustrates how the methodology is used to quantitatively test the level of statistical significance of the CFD simulation result after accounting for the relevant uncertainties.

References

References
1.
William
,
L.
, and
Oberkampf
,
C. R.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
, New York.
2.
Camy
,
R.
,
2014
,
Présentation du procédé de calcul des incertitudes PERCEIVE (Propagation of uncERtainties in Chaotic Simulations With ExperImental Validation and Bootstrap Evaluation)
,
EDF, R&D
: 2014, Chatou, France.
3.
Bailly
,
P.
, and
Verrier
,
V.
,
2010
, “
Mesures Physiques et Indicateurs de performances - Guide Méthodologique Pour L'estimation Des Incertitudes
,” EDF R&D, Chatou, France.
4.
Maître
,
O. P. L.
, and
Knio
,
O. M.
,
2010
,
Spectral Methods for Uncertainty Quantification
,
Springer-Verlag
, New York.
5.
Brian
,
M. A.
,
Ebeida
,
M. S.
,
Eldred
,
M. S.
,
Geraci
,
G.
,
Jakeman
,
J. D.
,
Maupin
,
K. A.
,
Monschke
,
J. A.
,
Swiler
,
L. P.
,
Stephens
,
J. A.
,
Vigil
,
D. M.
, and
Wildey
,
T. M.
,
Dakota, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.6 Theory Manual
,
Sandia National Laboratories
, Albuquerque, NM.
6.
Bailly
,
P.
,
2010
,
Mesures Physiques et Indicateurs de performances - Guide Méthodologique Pour L'estimation Des Incertitudes
,
EDF, R&D
, Chatou, France.
7.
Lefebvre
,
Y.
, DeRocquigny, E., Lebrun, A.-h. D., Delcoigne, F., Cagnac, A., and Sudret, B.,
2008
,
Guide Méthodologique Pour le Traitement Des Incertitudes
,
EDF, R&D
, Chatou, France.
8.
Otgonbaatar
,
U.
,
2016
,
Methodology for Characterization of Representativeness Uncertainty in Performance Indicator Measurements of Thermal and Nuclear Power Plants, Nuclear Science and Engineering Department
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
9.
Chernick
,
M. R.
,
2008
,
Bootstrap Methods: A Guide for Practitioners and Researchers
,
2nd ed.
,
Wiley
, Hoboken, NJ.
10.
Zoubir
,
A. M.
,
1993
, “
Bootstrap: Theory and Applications
,”
Proc. SPIE
,
2027
(epub).
11.
Rapacchi
,
B.
,
1994
, “
Une Introduction au Bootstrap
,” Centre Interuniversitaire de Calcul de Grenoble, 15 Décembre.
12.
ASME,
2009
,
V&V 20-2009 Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,
American Society of Mechanical Engineers
, New York.
13.
Lascar
,
C.
, Jan, E., Goodheart, K., Keheley, T., Martin, M., Hatman, A., Chatelain, A., and Baglietto, E.,
2013
, “
Application of the ASME V&V20 to Predict Uncertainties in CFD Calculations
,”
NURETH-15
,
Pisa, Italy
, May 12–17.
14.
Eça
,
A. L.
, and
Hoekstra
,
M.
,
2014
, “
A Procedure for the Estimation of the Numerical Uncertainty of CFD Calculations Based on Grid Refinement Studies
,”
J. Comput. Phys.
,
262
, pp.
104
130
.
15.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid. Mech
,
29
(
1
), pp.
123
160
.
16.
Ko
,
J.
, and
Galpin
,
J.
,
2013
, “
Comparison of Different Solutions for the Polynomial Chaos Expansion
,”
ERCOFTAC Workshop on Uncertainty Quantification in Computational Fluid Dynamics
,
France
,
Lyon
, June 17–18.
17.
Badillo
,
A.
,
Kapulla
,
R.
, and
Niceno
,
B.
,
2013
, “
Uncertainty Quantification in CFD Simulations of Isokinetic Turbulent Mixing
,”
ERCOFTAC Workshop on Workshop on Uncertainty Quantification in Computational Fluid Dynamics
,
Lyon, France
, June 17–18.
18.
Witteveen
,
J.
, and
Komen
,
E.
,
2013
, “
Possible Approach of UQ for NRS CFD Analyses: Application of UQ to CFD for BDT
,”
ERCOFTAC Workshop on UQ
, Lyon, France.
19.
JCGM
,
2008
,
International Vocabulary of Metrology—Basic and General Concepts and Associated Terms (VIM)
, Joint Committee for Guides in Metrology.
20.
Oberkampf
,
W. L.
, and
Smith
,
B. L.
,
2014
, “
Assessment Criteria for Computational Fluid Dynamics Validation Benchmark Experiments
,”
AIAA
Paper No. 2014-0205.
21.
Rice
,
J. A.
,
2006
,
Mathematical Statistics and Data Analysis
,
Cengage Learning
, Belmont, CA.
22.
Clayton
,
B. R.
, and
Choi
,
K.-S.
,
2011
, “
The Mechanism of Turbulent Drag Reduction With Wall Oscillation
,”
Int. J. Heat Fluid Flow
,
22
(
1
), pp.
1
9
.
23.
Blackburn
,
H. M.
, Chin, C., Ng, H. C. H., Blackburn, H. M., Monty, J. P., and Ooi, A.,
2015
, “
Turbulent Pipe Flow at Re= 1000: A Comparison of Wall-Resolved Large-Eddy Simulation, Direct Numerical Simulation and Hot-Wire Experiment
,”
Comput. Fluids
,
122
, pp.
26
33
.
24.
Meyer
,
M. K.
,
1995
,
An Experimental Investigation of Organized Turbulent Motions and Wall-Pressure Fluctuations in Complex Flows
,
Dahlgren Division Naval Surface Warfare Center, Strategic and Space Systems Department
, Dahlgren, VA.
25.
Poggi
,
D.
,
Porporato
,
A.
, and
Ridolfi
,
L.
,
2002
, “
An Experimental Contribution to Near- wall Measurements by Means of a Special Laser Doppler Anemometry Technique
,”
Exp. Fluids
,
32
(
3
), pp.
366
375
.
26.
Hesterberg
,
T.
,
2011
, “
Bootstrap
,”
WIREs Comp. Stat.
,
3
(
6
), pp.
497
526
.
27.
Moore
,
D. S.
, Hesterberg, T., Monaghan, S., Moore, D. S., Clipson, A., and Epstein, R.,
2003
,
Bootstrap Methods and Permutation Tests
,
W. H. Freeman and Company
, New York.
28.
Otgonbaatar
,
U.
,
Baglietto
,
E.
, and
Todreas
,
N.
,
2016
, “
Methodology for Characterizing Representativeness Uncertainty in Orifice Plate Mass Flow Rate Measurements Using CFD Simulations
,”
Nucl. Sci. Eng.
,
184
(
3
), pp.
430
440
.
29.
ISO
,
2003
,
Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits Running Full—Part 2: Orifice Plates
, International Organization for Standardization, Geneva, Switzerland.
30.
CD Adapco,
2013
, “STAR-CCM+ User Manual,”
CD Adapco
,
London
.
You do not currently have access to this content.