The objective of this work is to provide and use both experimental fluid dynamics (EFD) data and computational fluid dynamics (CFD) results to validate a regular-wave uncertainty quantification (UQ) model of ship response in irregular waves, based on a set of stochastic regular waves with variable frequency. As a secondary objective, preliminary statistical studies are required to assess EFD and CFD irregular wave errors and uncertainties versus theoretical values and evaluate EFD and CFD resistance and motions uncertainties and, in the latter case, errors versus EFD values. UQ methods include analysis of the autocovariance matrix and block-bootstrap of time series values (primary variable). Additionally, the height (secondary variable) associated with the mean-crossing period is assessed by the bootstrap method. Errors and confidence intervals of statistical estimators are used to define validation criteria. The application is a two-degrees-of-freedom (heave and pitch) towed Delft catamaran with a length between perpendiculars equal to 3 m (scale factor equal to 33), sailing at Froude number equal to 0.425 in head waves at scaled sea state 5. Validation variables are x-force, heave and pitch motions, vertical acceleration of bridge, and vertical velocity of flight deck. Autocovariance and block-bootstrap methods for primary variables provide consistent and complementary results; the autocovariance is used to assess the uncertainty associated with expected values and standard deviations and is able to identify undesired self-repetition in the irregular wave signal; block-bootstrap methods are used to assess additional statistical estimators such as mode and quantiles. Secondary variables are used for an additional assessment of the quality of experimental and simulation data as they are generally more difficult to model and predict than primary variables. Finally, the regular wave UQ model provides a good approximation of the desired irregular wave statistics, with average errors smaller than 5% and validation uncertainties close to 10%.

References

References
1.
Benek
,
J. A.
, and
Luckring
,
J. M.
,
2017
, “
Overview of the AVT-191 Project to Assess Sensitivity Analysis and Uncertainty Quantification Methods for Military Vehicle Design
,”
AIAA
Paper No. AIAA 2017-1196
.
2.
Stern
,
F.
,
Volpi
,
S.
,
Gaul
,
N. J.
,
Choi
,
K. K.
,
Diez
,
M.
,
Broglia
,
R.
,
Durante
,
D.
,
Campana
,
E.
, and
Iemma
,
U.
,
2017
, “
Development and Assessment of Uncertainty Quantification Methods for Ship Hydrodynamics
,”
AIAA
Paper No. AIAA 2017-1654.
3.
Diez
,
M.
,
Serani
,
A.
,
Campana
,
E. F.
, and
Stern
,
F.
,
2017
, “
CFD-Based Stochastic Optimization of a Destroyer Hull Form for Realistic Ocean Operations
,”
14th International Conference on Fast Sea Transportation
(
FAST
), Nantes, France, Sept. 27–29, pp. 1–9.https://www.researchgate.net/publication/320035523_CFD-based_Stochastic_Optimization_of_a_Destroyer_Hull_Form_for_Realistic_Ocean_Operations
4.
Serani
,
A.
, and
Diez
,
M.
,
2018
, “
Shape Optimization Under Stochastic Conditions by Design-Space Augmented Dimensionality Reduction
,”
AIAA
Paper No. 2018-3416.
5.
Pisaroni
,
M.
,
Nobile
,
F.
, and
Leyland
,
P.
,
2017
, “
A Continuation Multi Level Monte Carlo (C-MLMC) Method for Uncertainty Quantification in Compressible Inviscid Aerodynamics
,”
Comput. Methods Appl. Mech. Eng.
,
326
, pp.
20
50
.
6.
Wunsch
,
D.
,
Hirsch
,
C.
,
Nigro
,
R.
, and
Coussement
,
G.
,
2015
, “
Quantification of Combined Operational and Geometrical Uncertainties in Turbo-Machinery Design
,”
ASME
Paper No. GT2015-43399
.
7.
Quagliarella
,
D.
,
Petrone
,
G.
, and
Iaccarino
,
G.
,
2014
, “
Optimization Under Uncertainty Using the Generalized Inverse Distribution Function
,”
Modeling, Simulation and Optimization for Science and Technology
,
Springer
,
Dordrecht, The Netherlands
, pp.
171
190
.
8.
Mousaviraad
,
S. M.
,
He
,
W.
,
Diez
,
M.
, and
Stern
,
F.
,
2013
, “
Framework for Convergence and Validation of Stochastic Uncertainty Quantification and Relationship to Deterministic Verification and Validation
,”
Int. J. Uncertainty Quantif.
,
3
(
5
), pp. 371–395.
9.
He
,
W.
,
Diez
,
M.
,
Zou
,
Z.
,
Campana
,
E. F.
, and
Stern
,
F.
,
2013
, “
URANS Study of Delft Catamaran Total/Added Resistance, Motions and Slamming Loads in Head Sea Including Irregular Wave and Uncertainty Quantification for Variable Regular Wave and Geometry
,”
Ocean Eng.
,
74
, pp.
189
217
.
10.
Diez
,
M.
,
He
,
W.
,
Campana
,
E. F.
, and
Stern
,
F.
,
2014
, “
Uncertainty Quantification of Delft Catamaran Resistance, Sinkage and Trim for Variable Froude Number and Geometry Using Metamodels, Quadrature and Karhunen–Loève Expansion
,”
J. Mar. Sci. Technol.
,
19
(
2
), pp.
143
169
.
11.
Volpi
,
S.
,
Diez
,
M.
,
Gaul
,
N. J.
,
Song
,
H.
,
Iemma
,
U.
,
Choi
,
K. K.
,
Gaul
,
N. J.
, and
Stern
,
F.
,
2015
, “
Development and Validation of a Dynamic Metamodel Based on Stochastic Radial Basis Functions and Uncertainty Quantification
,”
Struct. Multidiscip. Optim.
,
51
(
2
), pp.
347
368
.
12.
Diez
,
M.
,
Campana
,
E. F.
, and
Stern
,
F.
,
2015
, “
Development and Evaluation of Hull-Form Stochastic Optimization Methods for Resistance and Operability
,”
13th International Conference on Fast Sea Transportation
(
FAST
), Washington, DC, Sept. 1–4, pp. 1–18. https://www.researchgate.net/publication/281839894_Development_and_evaluation_of_hull-form_stochastic_optimization_methods_for_resistance_and_operability
13.
Diez
,
M.
,
Campana
,
E. F.
, and
Stern
,
F.
,
2018
, “
Stochastic Optimization Methods for Ship Resistance and Operational Efficiency Via CFD
,”
Struct. Multidiscip. Optim.
,
57
(
2
), pp.
735
758
.
14.
Diez
,
M.
,
Broglia
,
R.
,
Durante
,
D.
,
Campana
,
E. F.
, and
Stern
,
F.
,
2015
, “
Validation of High-Fidelity Uncertainty Quantification of a High-Speed Catamaran in Irregular Waves
,”
13th International Conference on Fast Sea Transportation
(
FAST
), Washington, DC, Sept. 1–4, pp. 1–21. https://www.researchgate.net/publication/281840423_Validation_of_high-fidelity_uncertainty_quantification_of_a_high-speed_catamaran_in_irregular_waves
15.
Diez
,
M.
,
Broglia
,
R.
,
Durante
,
D.
,
Olivieri
,
D.
,
Campana
,
E. F.
, and
Stern
,
F.
,
2016
, “
Statistical Validation of a High-Speed Catamaran in Irregular Waves
,”
31st Symposium on Naval Hydrodynamics
, Monterey, CA, Sept. 11–16, pp. 1–16. https://www.researchgate.net/publication/308889413_Statistical_Validation_of_a_High-speed_Catamaran_in_Irregular_Waves
16.
Diez
,
M.
,
Broglia
,
R.
,
Durante
,
D.
,
Olivieri
,
A.
,
Campana
,
E.
, and
Stern
,
F.
,
2017
, “
Validation of Uncertainty Quantification Methods for High-Fidelity CFD of Ship Response in Irregular Waves
,”
AIAA
Paper No. 2007-1655.
17.
Van't Veer
,
R.
,
1998
, “
Experimental Results of Motions, Hydrodynamic Coefficients and Wave Loads on the 372 Catamaran Model
,” TU Delft, Delft, The Netherlands, Report, No. 1129.
18.
Van't Veer
,
R.
,
1998
, “
Experimental Results of Motions, and Structural Loads on the 372 Catamaran Model in Head and Oblique Waves
,” TU Delft, Delft, The Netherlands, Report, No. 1130.
19.
Diez
,
M.
,
Chen
,
X.
,
Campana
,
E. F.
, and
Stern
,
F.
,
2013
, “
Reliability-Based Robust Design Optimization for Ships in Real Ocean Environment
,”
12th International Conference on Fast Sea Transportation
(FAST2013), Amsterdam, The Netherlands, pp. 1–12.
20.
North Atlantic Treaty Organization, Military Agency for Standardization,
2000
, STANAG 4154 - Common Procedures for Seakeeping in the Ship Design Process, IHS Inc., Englewood, CO.
21.
Ochi
,
M. K.
,
2005
,
Ocean Waves: The Stochastic Approach
,
Cambridge University Press
,
Cambridge, UK
.
22.
Stern
,
F.
,
Wilson
,
R. V.
,
Coleman
,
H. W.
, and
Paterson
,
E. G.
,
2001
, “
Comprehensive Approach to Verification and Validation of CFD Simulations—Part 1: Methodology and Procedures
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
793
802
.
23.
Sadat-Hosseini
,
H.
,
Kim
,
D. H.
,
Toxopeus
,
S.
,
Diez
,
M.
, and
Stern
,
F.
, 2015, “
CFD and Potential Flow Simulations of Fully Appended Free Running 5415M in Irregular Waves
,”
World Maritime Technology Conference
, Providence, RI, Nov. 3–7, pp.
3
7
.
24.
Silverman
,
B. W.
,
1986
,
Density Estimation for Statistics and Data Analysis
,
Chapman & Hall/CRC
,
London
, p.
48
.
25.
Belenky
,
V.
,
Pipiras
,
V.
,
Kent
,
C.
,
Hughes
,
M.
,
Campbell
,
B.
, and
Smith
,
T.
,
2013
, “
On the Statistical Uncertainty of Time-Domain-Based Assessment of Stability Failure: Confidence Interval for the Mean and the Variance of a Time Series
,”
13th International Ship Stability Workshop
, Brest, France, Sept. 23–26, pp. 1–12.
26.
Belenky
,
V.
,
Pipiras
,
V.
, and
Weems
,
K.
,
2015
, “
Statistical Uncertainty of Ship Motion Data
,”
12th International Conference on the Stability of Ships and Ocean Vehicles
, (
STAB
), Glasgow, UK, June 14–19, pp. 1–12. http://www.shipstab.org/files/Proceedings/STAB/STAB2015/Papers/11.3-1-Belenky.pdf
27.
Carlstein
,
E.
,
1986
, “
The Use of Subseries Values for Estimating the Variance of a General Statistic From a Stationary Sequence
,”
Ann. Stat.
,
14
(
3
), pp.
1171
1179
.
28.
Künsch
,
H. R.
,
1989
, “
The Jackknife and the Bootstrap for General Stationary Observations
,”
Ann. Stat.
,
17
(
3
), pp.
1217
1241
.
29.
Politis
,
D. N.
, and
Romano
,
J. P.
,
1994
, “
The Stationary Bootstrap
,”
J. Am. Stat. Assoc.
,
89
(
428
), pp.
1303
1313
.
30.
Efron
,
B.
,
1981
, “
Nonparametric Estimates of Standard Error: The Jackknife, the Bootstrap and Other Methods
,”
Biometrika
,
68
(
3
), pp.
589
599
.
31.
Stern
,
F.
,
Diez
,
M.
,
Sadat-Hosseini
,
H.
,
Yoon
,
H.
, and
Quadvlieg
,
F.
,
2018
, “
Statistical Approach for Computational Fluid Dynamics State-of-the-Art Assessment: N-Version Verification and Validation
,”
ASME J. Verif. Validation Uncertainty Quantif.
,
2
(
3
), p.
031004
.
32.
Huang
,
J.
,
Carrica
,
P.
, and
Stern
,
F.
,
2008
, “
Semi-Coupled Air/Water Immersed Boundary Approach for Curvilinear Dynamic Overset Grids With Application to Ship Hydrodynamics
,”
Int. J. Numer. Meth. Fluids
,
58
(
6
), pp.
591
624
.
33.
Stern
,
F.
,
Wang
,
Z.
,
Yang
,
J.
,
Sadat-Hosseini
,
H.
,
Bhushan
,
S.
,
Mousaviraad
,
S. M.
,
Diez
,
M.
,
Yoon
,
S.-H.
,
Wu
,
P.-C.
,
Yeon
,
S. M.
,
Dogan
,
T.
,
Kim
,
D.-H.
,
Volpi
,
S.
,
Conger
,
M.
,
Michael
,
T.
,
Xing
,
T.
,
Thodal
,
R. S.
, and
Grenestedt
,
J. L.
,
2015
, “
Recent Progress in CFD for Naval Architecture and Ocean Engineering
,”
J. Hydrodyn., Ser. B
,
27
(
1
), pp.
1
23
.
34.
Noack
,
R.
,
2005
, “
SUGGAR: A General Capability for Moving Body Overset Grid Assembly
,”
AIAA
Paper No. AIAA 2005-5117.
35.
Larsson
,
L.
,
Stern
,
F.
,
Visonneau
,
M.
,
Hino
,
T.
,
Hirata
,
N.
, and
Kim
,
J.
, eds.,
2015
, Proceedings, Tokyo 2015 Workshop on CFD in Ship Hydrodynamics, National Maritime Research Institute, Tokyo, Japan.
36.
Volpi
,
S.
,
Diez
,
M.
,
Sadat-Hosseini
,
H.
,
Kim
,
D. H.
,
Stern
,
F.
,
Thodal
,
R. S.
, and
Grenestedt
,
J. L.
,
2017
, “
Composite Bottom Panel Slamming of a Fast Planing Hull Via Tightly Coupled Fluid-Structure Interaction Simulations and Sea Trials
,”
Ocean Eng.
,
143
, pp.
240
258
.
You do not currently have access to this content.