This paper presents grid refinement studies for statistically steady, two-dimensional (2D) flows of an incompressible fluid: a flat plate at Reynolds numbers equal to 107, 108, and 109 and the NACA 0012 airfoil at angles of attack of 0, 4, and 10 deg with Re = 6 × 106. Results are based on the numerical solution of the Reynolds-averaged Navier–Stokes (RANS) equations supplemented by one of three eddy-viscosity turbulence models of choice: the one-equation model of Spalart and Allmaras and the two-equation models k – ω SST and kkL. Grid refinement studies are performed in sets of geometrically similar structured grids, permitting an unambiguous definition of the typical cell size, using double precision and an iterative convergence criterion that guarantees a numerical error dominated by the discretization error. For each case, different grid sets with the same number of cells but different near-wall spacings are used to generate a data set that allows more than one estimation of the numerical uncertainty for similar grid densities. The selected flow quantities include functional (integral), surface, and local flow quantities, namely, drag/resistance and lift coefficients; skin friction and pressure coefficients at the wall; and mean velocity components and eddy viscosity at specified locations in the boundary-layer region. An extra set of grids significantly more refined than those proposed for the estimation of the numerical uncertainty is generated for each test case. Using power law extrapolations, these extra solutions are used to obtain an approximation of the exact solution that allows the assessment of the performance of the numerical uncertainty estimations performed for the basis data set. However, it must be stated that with grids up to 2.5 (plate) and 8.46 (airfoil) million cells in two dimensions, the asymptotic range is not attained for many of the selected flow quantities. All this data is available online to the community.

References

References
1.
ASME
,
2009
,
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,
American Society of Mechanical Engineers
, New York.
2.
Roache
,
P. J.
,
1998
,
Verification and Validation in Computational Science and Engineering
,
Hermosa Publishers
,
Albuquerque, NM
.
3.
Roache
,
P. J.
,
2009
,
Fundamentals of Verification and Validation
,
Hermosa Publishers
,
Albuquerque, NM
.
4.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
.
5.
Eça
,
L.
, and
Hoekstra
,
M.
,
2009
, “
Evaluation of Numerical Error Estimation Based on Grid Refinement Studies With the Method of the Manufactured Solutions
,”
Comput. Fluids
,
38
(
8
), pp.
1580
1591
.
6.
Eça
,
L.
,
Hoekstra
,
M.
, and
Vaz
,
G.
,
2012
, “
Manufactured Solutions for Steady-Flow Reynolds-Averaged Navier-Stokes Solvers
,”
Int. J. Comput. Fluid Dyn.
,
26
(
5
), pp.
313
332
.
7.
Celik
,
I.
, and
Hu
,
G.
,
2004
, “
Single Grid Error Estimation Using Error Transport Equation
,”
ASME J. Fluids Eng.
,
126
(
5
), pp.
778
790
.
8.
Celik
,
I.
, and
Parsons
,
D.
,
2017
, “
Prediction of Discretization Error Using the Error Transport Equation
,”
J. Comput. Phys.
,
339
, pp.
96
125
.
9.
Roache
,
P. J.
, 1994, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(3), pp. 405–413.
10.
Celik
,
I.
,
Karaismail
,
E.
, and
Parsons
,
D.
,
2007
, “
A Reliable Error Estimation Technique for CFD Applications
,”
AVT-147 Symposium on Computational Uncertainty in Military Design
, Athens, Dec., 3–4, pp. 32-1–32-20.
11.
Xing
,
T.
, and
Stern
,
F.
,
2010
, “
Factors of Safety for Richardson Extrapolation
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061403
.
12.
Eça
,
L.
, and
Hoekstra
,
M.
,
2014
, “
A Procedure for the Estimation of the Numerical Uncertainty of CFD Calculations Based on Grid Refinement Studies
,”
J. Comput. Phys.
,
262
, pp.
104
130
.
13.
Rider
,
W. J.
,
Witkowski
,
W.
,
Kamm
,
J. R.
, and
Wildey
,
T.
,
2016
, “
Robust Verification Analysis
,”
J. Comput. Phys.
,
307
, pp.
146
163
.
14.
Phillips
,
T. S.
, and
Roy
,
C. J.
,
2017
, “
A New Extrapolation-Based Uncertainty Estimator for Computational Fluid Dynamics
,”
ASME J. Verif. Valid. Uncertainty Quantif.
,
1
(
4
), p.
041006
.
15.
Técnico Lisboa, 2017, “
Técnico Lisboa
,” Lisbon, Portugal, accessed July 19, 2018, http://web.tecnico.ulisboa.pt/ist12278/Discretization/Workshop_discretization_2017.htm
16.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aerosp.
,
1
, pp.
5
21
.
17.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
18.
Menter
,
F. R.
,
Kuntz
,
M.
,
Langtry
,
R.
, -
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbulence, Heat and Mass Transfer 4
,
K.
Hanjalic
,
Y.
Nagano
, and
M.
Tummers
, eds.,
Begell House
, West Redding, CT, pp.
625
632
.
19.
Menter
,
F. R.
,
Egorov
,
Y.
, and
Rusch
,
D.
, -
2006
, “
Steady and Unsteady Flow Modelling Using the k−kL Model
,”
Turbulence Heat and Mass Transfer 5
, K. Hanjalic, Y. Nagano, and S. Jakirlic, eds., Begell House, West Redding, CT.
20.
Eça
,
L.
,
Klaij
,
C. M.
,
Vaz
,
G.
,
Hoekstra
,
M.
, and
Pereira
,
F. S.
,
2016
, “
On Code Verification of RANS Solvers
,”
J. Comput. Phys.
,
310
, pp.
418
439
.
21.
Diskin
,
B.
,
Thomas
,
J. L.
, and
Rumsey
,
C. L.
,
2016
, “
Grid-Convergence of Reynolds-Averaged Navier-Stokes Solutions for Benchmark Flows in Two Dimensions
,”
AIAA J.
,
54
(
9
), pp.
2563
2588
.
22.
Eça
,
L.
, and
Hoekstra
,
M.
,
2004
, “
On the Grid Sensitivity of the Wall Boundary Condition of the k – ω Model
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
900
910
.
23.
Wilcox
,
D. C.
,
2006
,
Turbulence Modelling for CFD
,
2nd ed.
,
DCW Industries
, La Cañada, CA.
24.
Vinokur
,
M.
,
1983
, “
On One-Dimensional Stretching Functions for Finite Difference Calculations
,”
J. Comput. Phys.
,
50
(
2
), pp.
215
234
.
25.
Eça
,
L.
,
Hoekstra
,
M.
, and
Windt
,
J.
,
2002
, “
Practical Grid Generation Tools With Applications to Ship Hydrodynamics
,”
Eighth International Conference on Numerical Grid Generation in Computational Field Simulations
, Honolulu, HI, pp. 317–328.
26.
Fox
,
J.
,
2002
,
An R and S-plus Companion to Applied Regression
,
SAGE Publications
, London.
You do not currently have access to this content.