Uncertainty quantification (UQ) and propagation are critical to the computational assessment of structural components and systems. In this work, we discuss the practical challenges of implementing uncertainty quantification for high-dimensional computational structural investigations, specifically identifying four major challenges: (1) Computational cost; (2) Integration of engineering expertise; (3) Quantification of epistemic and model-form uncertainties; and (4) Need for V&V, standards, and automation. To address these challenges, we propose an approach that is straightforward for analysts to implement, mathematically rigorous, exploits analysts' subject matter expertise, and is readily automated. The proposed approach utilizes the Latinized partially stratified sampling (LPSS) method to conduct small sample Monte Carlo simulations. A simplified model is employed and analyst expertise is leveraged to cheaply investigate the best LPSS design for the structural model. Convergence results from the simplified model are then used to design an efficient LPSS-based uncertainty study for the high-fidelity computational model investigation. The methodology is carried out to investigate the buckling strength of a typical marine stiffened plate structure with material variability and geometric imperfections.

References

References
1.
Ferson
,
S.
, and
Ginzburg
,
L. R.
,
1996
, “
Different Methods are Needed to Propagate Ignorance and Variability
,”
Reliab. Eng. Syst. Saf.
,
54
(
2–3
), pp.
133
144
.
2.
Der Kiureghian
,
A.
, and
Ditlevsen
,
O.
,
2009
, “
Aleatory or Epistemic? Does It Matter?
,”
Struct. Saf.
,
31
(
2
), pp.
105
112
.
3.
Roy
,
C. J.
, and
Oberkampf
,
W. L.
,
2011
, “
A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
25–28
), pp.
2131
2144
.
4.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc. Ser. B (Stat. Methodol.)
,
63
(
3
), pp.
425
464
.
5.
Zhang
,
R.
, and
Mahadevan
,
S.
,
2000
, “
Model Uncertainty and Bayesian Updating in Reliability-Based Inspection
,”
Struct. Saf.
,
22
(
2
), pp.
145
160
.
6.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.
7.
Maıtre
,
O. P. L.
, and
Knio
,
O. M.
,
2010
,
Spectral Methods for Uncertainty Quantification. Scientific Computation
,
Springer
,
New York
.
8.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2013
,
Topology Optimization: Theory, Methods, and Applications
, Springer Science & Business Media, Berlin.
9.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
2003
,
Stochastic Finite Elements: A Spectral Approach
, Springer, New York.
10.
Xiu
,
D.
, and
Karniadakis
,
G.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
11.
Blatman
,
G.
, and
Sudret
,
B.
,
2010
, “
An Adaptive Algorithm to Build Up Sparse Polynomial Chaos Expansions for Stochastic Finite Element Analysis
,”
Probab. Eng. Mech.
,
25
(
2
), pp.
183
197
.
12.
Babuška
,
I.
,
Nobile
,
F.
, and
Tempone
,
R.
,
2007
, “
A Stochastic Collocation Method for Elliptic Partial Differential Equations With Random Input Data
,”
SIAM J. Numer. Anal.
,
45
(
3
), pp.
1005
1034
.
13.
Xiu
,
D.
, and
Hesthaven
,
J.
,
2005
, “
High-Order Collocation Methods for Differential Equations With Random Inputs
,”
SIAM J. Sci. Comput.
,
27
(
3
), pp.
1118
1139
.
14.
Nobile
,
F.
,
Tempone
,
R.
, and
Webster
,
C.
,
2008
, “
A Sparse Grid Stochastic Collocation Method for Partial Differential Equations With Random Input Data
,”
SIAM J. Numer. Anal.
,
46
(
5
), pp.
2309
2345
.
15.
Nobile
,
F.
,
Tempone
,
R.
, and
Webster
,
C.
,
2008
, “
An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations With Random Input Data
,”
SIAM J. Numer. Anal.
,
46
(
5
), pp.
2411
2442
.
16.
Ma
,
X.
, and
Zabaras
,
N.
,
2009
, “
An Adaptive Hierarchical Sparse Grid Collocation Algorithm for the Solution of Stochastic Differential Equations
,”
J. Comput. Phys.
,
228
(
8
), pp.
3084
3113
.
17.
Foo
,
J.
,
Wan
,
X.
, and
Karniadakis
,
G. E.
,
2008
, “
The Multi-Element Probabilistic Collocation Method (ME-PCM): Error Analysis and Applications
,”
J. Comput. Phys.
,
227
(
22
), pp.
9572
9595
.
18.
Sudret
,
B.
,
2012
, “
Meta-Models for Structural Reliability and Uncertainty Quantification
,”
arXiv:1203.2062
.https://arxiv.org/abs/1203.2062
19.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.
20.
Shields
,
M. D.
,
Teferra
,
K.
,
Hapij
,
A.
, and
Daddazio
,
R. P.
,
2015
, “
Refined Stratified Sampling for Efficient Monte Carlo Based Uncertainty Quantification
,”
Reliab. Eng. Syst. Saf.
,
142
, pp.
310
325
.
21.
Shields
,
M. D.
, and
Zhang
,
J.
,
2016
, “
The Generalization of Latin Hypercube Sampling
,”
Reliab. Eng. Syst. Saf.
,
148
, pp.
96
108
.
22.
Investigative Panel on Large Container Ship Safety
,
2014
, “
Investigation Report on Structural Safety of Large Container Ships
,” ClassNK,
Report
.https://www.classnk.or.jp/hp/pdf/news/Investigation_Report_on_Structural_Safety_of_Large_Container_Ships_EN_ClassNK.pdf
23.
Babuska
,
I.
,
Tempone
,
R.
, and
Zouraris
,
G.
,
2004
, “
Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations
,”
SIAM J. Numer. Anal.
,
42
(
2
), pp.
800
825
.
24.
Gunzburger
,
M. D.
,
Webster
,
C. G.
, and
Zhang
,
G.
,
2014
, “
Stochastic Finite Element Methods for Partial Differential Equations With Random Input Data
,”
Acta Numer.
,
23
, pp.
521
650
.
25.
Beer
,
M.
,
Ferson
,
S.
, and
Kreinovich
,
V.
,
2013
, “
Imprecise Probabilities in Engineering Analyses
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp.
4
29
.
26.
Moore
,
R. E.
,
1979
,
Methods and Applications of Interval Analysis
, Vol. 2, Society for Industrial and Applied Mathematics, Philadelphia, PA.
27.
Shafer
,
G.
,
1976
,
A Mathematical Theory of Evidence
, Vol. 1,
Princeton University Press
,
Princeton, NJ
.
28.
Walley
,
P.
,
1991
,
Statistical Reasoning With Imprecise Probabilities
, Chapman and Hall, New York.
29.
Zhang
,
J.
, and
Shields
,
M. D.
,
2018
, “
On the Quantification and Propagation of Imprecise Probabilities Resulting From Small Datasets
,”
Mech. Syst. Signal Process.
,
98
, pp.
465
483
.
30.
AGARD Working Group
,
1999
, “
Assessment of Experimental Uncertainty With Application to Wind Tunnel Testing
,”
AIAA
Standard No. AIAA S-071A-1999.
31.
ASME
, “
The Role of Uncertainty Quantification in Verification and Validation of Computational Solid Mechanics Models
,” V&V 10.2 (in press).
32.
National Research Council
,
2012
,
Assessing the Reliability of Complex Models: Mathematical and Statistical Foundations of Verification, Validation, and Uncertainty Quantification
,
National Academies Press
, Washington, DC.
33.
Wojtkiewicz
,
S.
,
Eldred
,
M.
,
Field
,
J. R.
,
Urbina
,
A.
, and
Red-Horse
,
J.
,
2001
, “
Uncertainty Quantification in Large Computational Engineering Models
,”
AIAA
Paper No. 2001-1455.
34.
Adams
,
B. M.
,
Bohnhoff
,
W. J.
,
Dalbey
,
K. R.
,
Eddy
,
J. P.
,
Eldred
,
M. S.
,
Gay
,
D. M.
,
Haskell
,
K.
,
Hough
,
P. D.
, and
Swiler
,
L. P.
,
2009
, “
DAKOTA, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 5.0 User's Manual
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No.
SAND2010-2183.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.5507&rep=rep1&type=pdf
35.
Schuëller
,
G. I.
, and
Pradlwarter
,
H. J.
,
2006
, “
Computational Stochastic Structural Analysis (COSSAN)—A Software Tool
,”
Struct. Saf.
,
28
(
1–2
), pp.
68
82
.
36.
Pellissetti
,
M. F.
, and
Schuëller
,
G. I.
,
2009
, “
Scalable Uncertainty and Reliability Analysis by Integration of Advanced Monte Carlo Simulation and Generic Finite Element Solvers
,”
Comput. Struct.
,
87
(
13–14
), pp.
930
947
.
37.
Thacker
,
B. H.
,
Riha
,
D. S.
,
Fitch
,
S. H. K.
,
Huyse
,
L. J.
, and
Pleming
,
J. B.
,
2006
, “
Probabilistic Engineering Analysis Using the NESSUS Software
,”
Struct. Saf.
,
28
(
1–2
), pp.
83
107
.
38.
Marelli
,
S.
, and
Sudret
,
B.
,
2014
,
UQLab: A Framework for Uncertainty Quantification in MATLAB
,
ETH-Zürich
, Zürich, Switzerland.
39.
Shields
,
M. D.
, and
Giovanis
,
D. G.
,
2018
, “
UQpy: Uncertainty Quantification Using Python
,” accessed Apr. 13, 2018, https://github.com/SURGroup/UQpy
40.
Nahshon
,
K.
, and
Reynolds
,
N.
,
2016
,
DICE: Distribution-Based Input for Computational Evaluations, Version 0.3
, Naval Surface Warfare Center Carderock Division, West Bethesda, MD, Report No. NSWCCD-66-TR-2014/007.
41.
Simulia Corp.
,
2001
,
ABAQUS/Standard User's Manual
, Vol.
1
, Dassault Systèmes, Providence, RI.
42.
Gerstner
,
T.
, and
Griebel
,
M.
,
2003
, “
Dimension–Adaptive Tensor–Product Quadrature
,”
Comput.
,
71
(
1
), pp.
65
87
.
43.
Gerstner
,
T.
, and
Griebel
,
M.
, 1998, “
Numerical Integration Using Sparse Grids
,”
Numer. Algorithms
,
18
(
3
), pp.
209
232
.
44.
Niederreiter
,
H.
,
2010
,
Quasi‐Monte Carlo Methods
,
Wiley
, Hoboken, NJ.
45.
Niederreiter
,
H.
,
1988
, “
Low-Discrepancy and Low-Dispersion Sequences
,”
J. Number Theory
,
30
(
1
), pp.
51
70
.
46.
Sobol
,
I. M.
,
1967
, “
On the Distribution of Points in a Cube and the Approximate Evaluation of Integrals
,”
USSR Comput. Math. Math. Phys.
,
7
(
4
), pp.
86
112
.
47.
Melchers
,
R. E.
,
1989
, “
Importance Sampling in Structural Systems
,”
Struct. Saf.
,
6
(
1
), pp.
3
10
.
48.
Engelund
,
S.
, and
Rackwitz
,
R.
,
1993
, “
A Benchmark Study on Importance Sampling Techniques in Structural Reliability
,”
Struct. Saf.
,
12
(
4
), pp.
255
276
.
49.
Au
,
S. K.
, and
Beck
,
J. L.
,
2003
, “
Important Sampling in High Dimensions
,”
Struct. Saf.
,
25
(
2
), pp.
139
163
.
50.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
51.
Fishman
,
G.
,
2013
,
Monte Carlo: Concepts, Algorithms, and Applications
,
Springer Science & Business Media
, New York.
52.
Rubinstein
,
R. Y.
, and
Kroese
,
D. P.
,
2008
,
Simulation and the Monte Carlo Method
,
Wiley
,
Hoboken, NJ
.
53.
Stein
,
M.
,
1987
, “
Large Sample Properties of Simulations Using Latin Hypercube Sampling
,”
Technometrics
,
29
(
2
), pp.
143
151
.
54.
Sobol'
,
I. M.
,
2003
, “
Theorems and Examples on High Dimensional Model Representation
,”
Reliab. Eng. Syst. Saf.
,
79
(
2
), pp.
187
193
.
55.
Ghiocel
,
D.
, and
Ghanem
,
R.
,
2002
, “
Stochastic Finite-Element Analysis of Seismic Soil–Structure Interaction
,”
J. Eng. Mech.
,
128
(
1
), pp.
66
77
.
56.
Olsson
,
A.
,
Sandberg
,
G.
, and
Dahlblom
,
O.
,
2003
, “
On Latin Hypercube Sampling for Structural Reliability Analysis
,”
Struct. Saf.
,
25
(
1
), pp.
47
68
.
57.
Choi
,
S.-K.
,
Grandhi
,
R. V.
,
Canfield
,
R. A.
, and
Pettit
,
C. L.
,
2004
, “
Polynomial Chaos Expansion With Latin Hypercube Sampling for Estimating Response Variability
,”
AIAA J.
,
42
(
6
), pp.
1191
1198
.
58.
Wu
,
C. F. J.
, and
Hamada
,
M. S.
,
2011
,
Experiments: Planning, Analysis, and Optimization
,
Wiley
, New York.
59.
Romero
,
V. J.
,
Burkardt
,
J. V.
,
Gunzburger
,
M. D.
, and
Peterson
,
J. S.
,
2006
, “
Comparison of Pure and ‘Latinized’ Centroidal Voronoi Tessellation Against Various Other Statistical Sampling Methods
,”
Reliab. Eng. Syst. Saf.
,
91
(
10–11
), pp.
1266
1280
.
60.
Saka
,
Y.
,
Gunzburger
,
M.
, and
Burkardt
,
J.
,
2007
, “
Latinized, Improved LHS, and CVT Point Sets in Hypercubes
,”
Int. J. Numer. Anal. Model.
,
4
(
3–4
), pp.
729
743
.https://www.researchgate.net/publication/242577446_Latinized_improved_LHS_and_CVT_point_sets_in_hypercubes
61.
Zhang
,
J.
, and
Shields
,
M. D.
, “
The Effect of Prior Probabilities on Quantification and Propagation of Imprecise Probabilities Resulting From Small Datasets
,”
Comput. Methods Appl. Mech. Eng.
(in press).
62.
Sundar
,
V. S.
, and
Shields
,
M. D.
,
2016
, “
Surrogate-Enhanced Stochastic Search Algorithms to Identify Implicitly Defined Functions for Reliability Analysis
,”
Struct. Saf.
,
62
, pp.
1
11
.
63.
Chopra
,
A. K.
, and
Goel
,
R. K.
,
2002
, “
A Modal Pushover Analysis Procedure for Estimating Seismic Demands for Buildings
,”
Earthq. Eng. Struct. Dyn.
,
31
(
3
), pp.
561
582
.
64.
Gordo
,
J. M.
,
Guedes Soares, C.
, and
Faulkner
,
D.
,
1996
, “
Approximate Assessment of the Ultimate Longitudinal Strength of the Hull Girder
,”
J. Ship Res.
,
40
(
I
), pp.
60
69
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.596.2481&rep=rep1&type=pdf
65.
Dawson
,
H.
, and
Smilowitz
,
R.
,
2016
, “
Inelastic Dynamic Response of Curtainwall Systems to Blast
,”
J. ASTM Int.
,
4
(
5
), pp.
5
9
.
66.
Benson
,
S. D.
,
2011
,
Progressive Collapse Assessment of Lightweight Ship Structures
,
Newcastle University
, Newcastle Upon Tyne, UK.
67.
Schafer
,
B. W.
,
Li
,
Z.
, and
Moen
,
C. D.
,
2010
, “
Computational Modeling of Cold-Formed Steel
,”
Thin-Walled Struct.
,
48
(
10–11
), pp.
752
762
.
68.
Benson
,
S.
,
Downes
,
J.
, and
Dow
,
R. S.
,
2013
, “
Compartment Level Progressive Collapse Analysis of Lightweight Ship Structures
,”
Mar. Struct.
,
31
, pp.
44
62
.
69.
Adamchak
,
J. C.
,
1982
, “
ULTSTR: A Program for Estimating the Collapse Moment of a Ship's Hull Under Longitudinal Bending
,” David W Taylor Naval Ship Research and Development Center, Bethesda, MD, DTIC Document No.
DTNSRDC-82/076
http://www.dtic.mil/docs/citations/ADA121452.
70.
ASME
,
2006
,
V&V 10: Guide for Verification and Validation in Computational Solid Mechanics
,
American Society of Mechanical Engineers
, New York.
71.
Hess
,
P.
, III.
, and
Ayyub
,
B. M.
,
1997
,
Variability in Geometry and Imperfections of Surface Ship Structural Scantlings
, Naval Surface Warfare Center Carderock Division, Bethesda, MD.
72.
Hess
,
P. E.
,
Bruchman
,
D.
,
Assakkaf
,
I. A.
, and
Ayyub
,
B. M.
,
2002
, “
Uncertainties in Material and Geometric Strength and Load Variables
,”
Nav. Eng. J.
,
114
(
2
), pp.
139
166
.
73.
Hughes
,
O. F.
,
2005
,
Ship Structural Design: A Rationally-Based, Computer-Aided, Optimization Approach
, Society of Naval Architects and Marine Engineers, Alexandria, VA.
You do not currently have access to this content.