One major problem in the design of aerospace components is the nonlinear changes in the response due to a change in the geometry and material properties. Many of these components have small nominal values and any change can lead to a large variability. In order to characterize this large variability, traditional methods require either many simulation runs or the calculations of many higher-order derivatives. Each of these paths requires a large amount of computational power to evaluate the response curve. In order to perform uncertainty quantification (UQ) analysis, even more simulation runs are required. The hyper-dual meta-model (HDM) is introduced and used to characterize the response curve with the use of basis functions. The information of the response is generated with the utilization of the hyper-dual (HD) step to determine the sensitivities at a few number of simulation runs to greatly enrich the response space. This paper shows the accuracy of this method for two different systems with parameterizations at different stages in the design analysis.

References

References
1.
Metropolis
,
N.
, and
Ulam
,
S.
,
1949
, “
The Monte Carlo Method
,”
J. Am. Stat. Assoc.
,
44
(
247
), pp.
335
341
.
2.
Shapiro
,
A.
, and
Homem-de Mello
,
T.
,
2000
, “
On the Rate of Convergence of Optimal Solutions of Monte Carlo Approximations of Stochastic Programs
,”
SIAM J. Optim.
,
11
(
1
), pp.
70
86
.
3.
Craig
,
R.
,
2000
, “
Coupling of Substructures for Dynamic Analyses—An Overview
,”
AIAA
Paper No. 2000-1573.
4.
Craig
,
R. R.
, and
Bampton
,
M.
,
1968
, “
Coupling of Substructures for Dynamic Analysis
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.
5.
Kammer
,
D.
, and
Triller
,
M.
,
1996
, “
Selection of Component Modes for Craig-Bampton Substructure Representations
,”
ASME J. Vib. Acoust.
,
188
(
2
), pp.
264
270
.
6.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.
7.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
8.
Michael
,
S.
,
1987
, “
Large Sample Properties of Simulations Using Latin Hypercube Sampling
,”
Technometrics
,
29
(
2
), pp.
143
151
.
9.
Fornberg
,
B.
,
1988
, “
Generation of Finite Difference Formulas on Arbitrarily Spaced Grids
,”
Math. Comput.
,
51
(
184
), pp.
699
706
.
10.
Martins
,
J. R.
,
Sturdza
,
P.
, and
Alonso
,
J. J.
,
2001
, “
The Connection Between the Complex-Step Derivative Approximation and Algorithmic Differentiation
,”
AIAA
Paper No. 921.
11.
Martins
,
J. R.
,
Sturdza
,
P.
, and
Alonso
,
J. J.
,
2003
, “
The Complex-Step Derivative Approximation
,”
ACM Trans. Math. Software (TOMS)
,
29
(
3
), pp.
245
262
.
12.
Lantoine
,
G.
,
Russell
,
R. P.
, and
Dargent
,
T.
,
2012
, “
Using Multicomplex Variables for Automatic Computation of High-Order Derivatives
,”
ACM Trans. Math. Softw.
,
38
(
3
), pp.
16:1
16:21
.
13.
Garza
,
J.
, and
Millwater
,
H.
,
2013
, “
Sensitivity Analysis in Structural Dynamics Using the Zfem Complex Variable Finite Element Method
,”
AIAA
Paper No. 2013-1580.
14.
Garza
,
J.
, and
Millwater
,
H.
,
2015
, “
Multicomplex Newmark-Beta Time Integration Method for Sensitivity Analysis in Structural Dynamics
,”
AIAA J.
,
53
(
5
), pp.
1188
1198
.
15.
Fike
,
J. A.
, and
Alonso
,
J. J.
,
2011
, “
The Development of Hyper-Dual Numbers for Exact Second-Derivative Calculations
,”
AIAA
Paper No. 2011-886.
16.
Fike
,
J. A.
,
2013
, “
Multi-Objective Optimization Using Hyper-Dual Numbers
,”
Ph.D. thesis
, Stanford University, Stanford, CA.https://searchworks.stanford.edu/view/10182384
17.
Fike
,
J. A.
,
Jongsma
,
S.
,
Alonso
,
J. J.
, and
Van Der Weide
,
E.
,
2011
, “
Optimization With Gradient and Hessian Information Calculated Using Hyper-Dual Numbers
,”
AIAA
Paper No. 3807.
18.
Fike
,
J. A.
, and
Alonso
,
J. J.
,
2012
, “
Automatic Differentiation Through the Use of Hyper-Dual Numbers for Second Derivatives
,”
Recent Advances in Algorithmic Differentiation
,
Springer
, Berlin, pp.
163
173
.
19.
Bonney
,
M. S.
,
Kammer
,
D. C.
, and
Brake
,
M. R. W.
,
2015
, “
Fully Parameterized Reduced Order Models Using Hyper-Dual Numbers and Component Mode Synthesis
,”
ASME
Paper No. DETC2015-46029.
20.
Brake
,
M. R. W.
,
Fike
,
J. A.
, and
Topping
,
S. D.
,
2016
, “
Parameterized Reduced Order Models From a Single Mesh Using Hyper-Dual Numbers
,”
J. Sound Vib.
,
371
, pp.
370
392
.
21.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.
22.
Hong
,
S.
,
Epureanu
,
B. I.
, and
Castanier
,
M. P.
,
2013
, “
Next-Generation Parametric Reduced-Order Models
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp.
403
421
.
23.
Edwards
,
H. C.
,
2002
, “
Sierra Framework Version 3: Core Services Theory and Design
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2002-3616
.https://pdfs.semanticscholar.org/05dc/200dda1acf5b70442d648ed01415e326959c.pdf
24.
Reese
,
G. M.
,
2015
, “
Sierra Structural Dynamics User's Notes
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No.
SAND2015-9132
.
25.
Brake
,
M. R. W.
, 2018,
The Mechanics of Jounted Structures
,
Springer
, Cham, Switzerland.
26.
Brake
,
M. R. W.
,
Reuss
,
P.
,
Segalman
,
D. J.
, and
Gaul
,
L.
,
2014
, “
Variability and Repeatability of Jointed Structures With Frictional Interfaces
,”
Dynamics of Coupled Structures
, Vol.
1
,
Springer
, Cham, Switzerland, pp.
245
252
.
28.
Hong
,
S.-K.
,
Epureanu
,
B. I.
, and
Castanier
,
M. P.
,
2012
, “
Robust Signal Processing for Damaged Vehicles With Variability
,”
Int. J. Veh. Des.
,
61
(
1/2/3/4
), pp.
27
46
.
29.
Hong
,
S.-K.
,
Epureanu
,
B. I.
,
Castanier
,
M. P.
, and
Gorsich
,
D. J.
,
2011
, “
Parametric Reduced-Order Models for Predicting the Vibration Response of Complex Structures With Component Damage and Uncertainties
,”
J. Sound Vib.
,
330
(
6
), pp.
1091
1110
.
30.
Millwater
,
H. R.
, and
Shirinkam
,
S.
,
2014
, “
Multicomplex Taylor Series Expansion for Computing High Order Derivatives
,”
Int. J. Appl. Math.
,
27
(
4
), pp.
311
334
.
31.
Brake
,
M. R. W.
,
2013
, “
Imex-a: An Adaptive, Fifth Order Implicit-Explicit Integration Scheme
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2013-4299
.http://prod.sandia.gov/techlib/access-control.cgi/2013/134299.pdf
32.
Dormand
,
J.
, and
Prince
,
P.
,
1980
, “
A Family of Embedded Runge–Kutta Formulae
,”
J. Comput. Appl. Math.
,
6
(
1
), pp.
19
26
.
You do not currently have access to this content.