A numerical estimation of discretization error for steady compressible flow solutions is performed using the error transport equation (ETE). There is a deficiency in the literature for obtaining efficient, higher order accurate error estimates for finite volume discretizations using nonsmooth unstructured meshes. We demonstrate that to guarantee sharp, higher order accurate error estimates, one must discretize the ETE to a higher order than the primal problem, a requirement not necessary for uniform meshes. Linearizing the ETE can limit the added cost, rendering the overall computational time competitive, while retaining accuracy in the error estimate. For the Navier–Stokes equations, when the primal solution is corrected using this error estimate, for the same level of solution accuracy the overall computational time is more than two times faster compared to solving the higher order primal problem. In addition, our scheme has robustness advantages, because we solve the primal problem only to lower order.

References

References
1.
Stetter
,
H.
,
1978
, “
The Defect Correction Principle and Discretization Methods
,”
Numerische Math.
,
29
(
4
), pp.
425
443
.
2.
Roy
,
C. J.
,
Phillips
,
T. S.
,
Kurzen
,
M. J.
,
Sinclair
,
A. J.
, and
Raju
,
A.
,
2011
, “
Discretization Error Estimation and Exact Solution Generation Using the Method of Nearby Problems
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No.
SAND 2011-7118
.
3.
Ainsworth
,
M.
, and
Oden
,
J.
,
1997
, “
A Posteriori Error Estimation in Finite Element Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
142
(
1–2
), pp.
1
88
.
4.
Adjerid
,
S.
, and
Baccouch
,
M.
,
2010
, “
Asymptotically Exact a Posteriori Error Estimates for a One-Dimensional Linear Hyperbolic Problem
,”
Appl. Numer. Math.
,
60
(
9
), pp.
903
914
.
5.
Banks
,
J.
,
Hittinger
,
J.
,
Connors
,
J.
, and
Woodward
,
C.
,
2012
, “
Numerical Error Estimation for Nonlinear Hyperbolic PDEs Via Nonlinear Error Transport
,”
Comput. Methods Appl. Mech. Eng.
,
213–216
, pp.
1
15
.
6.
Hay
,
A.
, and
Visonneau
,
M.
,
2006
, “
Error Estimation Using the Error Transport Equation for Finite-Volume Methods and Arbitrary Meshes
,”
Int. J. Comput. Fluid Dyn.
,
20
(
7
), pp.
463
479
.
7.
Diskin
,
B.
, and
Thomas
,
J.
,
2007
, “
Accuracy Analysis for Mixed-Element Finite-Volume Discretization Schemes
,” National Institute of Aerospace, Hampton, VA, Technical Report No.
2007-08
.
8.
Ilinca
,
C.
,
Zhang
,
X.
,
Trépanier
,
J.-Y.
, and
Camarero
,
R.
,
2000
, “
A Comparison of Three Error Estimation Techniques for Finite-Volume Solutions of Compressible Flows
,”
Comput. Methods Appl. Mech. Eng.
,
189
(
4
), pp.
1277
1294
.
9.
Wang
,
Z.
,
Fidkowski
,
K.
,
Abgrall
,
R.
,
Bassi
,
F.
,
Caraeni
,
D.
,
Cary
,
A.
,
Deconinck
,
H.
,
Hartmann
,
R.
,
Hillewaert
,
K.
,
Huynh
,
H.
,
Kroll
,
N.
,
May
,
G.
,
Persson
,
P.-O.
,
van Leer
,
B.
, and
Visbal
,
M.
,
2013
, “
High-Order CFD Methods: Current Status and Perspective
,”
Int. J. Numer. Methods Eng.
,
72
(
8
), pp.
811
845
.
10.
Pierce
,
N.
, and
Giles
,
M.
,
2004
, “
Adjoint and Defect Error Bounding and Correction for Functional Estimates
,”
J. Comput. Phys.
,
200
(
2
), pp.
769
794
.
11.
Zhang
,
X.
,
Trépanier
,
J.-Y.
, and
Camarero
,
R.
,
2000
, “
A Posteriori Error Estimation for Finite-Volume Solutions of Hyperbolic Conservation Laws
,”
Comput. Methods Appl. Mech. Eng.
,
185
(
1
), pp.
1
19
.
12.
Qin
,
Y.
, and
Shih
,
T. I.-P.
,
2003
, “
A Method for Estimating Grid-Induced Errors in Finite-Difference and Finite-Volume Methods
,”
AIAA
Paper No. 2003-845.
13.
Celik
,
I.
, and
Hu
,
G.
,
2004
, “
Single Grid Error Estimation Using Error Transport Equation
,”
ASME J. Fluids Eng.
,
126
(
5
), pp.
778
790
.
14.
Michalak
,
C.
, and
Ollivier-Gooch
,
C.
,
2010
, “
Globalized Matrix-Explicit Newton-GMRES for the High-Order Accurate Solution of the Euler Equations
,”
Comput. Fluids
,
39
(
7
), pp.
1156
1167
.
15.
Barth
,
T. J.
, and
Frederickson
,
P. O.
,
1990
, “
Higher Order Solution of the Euler Equations on Unstructured Grids Using Quadratic Reconstruction
,”
AIAA
Paper No. 90-0013.
16.
Ollivier-Gooch
,
C. F.
, and
Van Altena
,
M.
,
2002
, “
A High-Order Accurate Unstructured Mesh Finite-Volume Scheme for the Advection-Diffusion Equation
,”
J. Comput. Phys.
,
181
(
2
), pp.
729
752
.
17.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.
18.
Nishikawa
,
H.
,
2010
, “
Beyond Interface Gradient: A General Principle for Constructing Diffusion Schemes
,”
AIAA
Paper No. 2010-5093.
19.
Arnold
,
D. N.
,
Brezzi
,
F.
,
Cockburn
,
B.
, and
Marini
,
L. D.
,
2002
, “
Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems
,”
SIAM J. Numer. Anal.
,
39
(
5
), pp.
1749
1779
.
20.
Nogueira
,
X.
,
Cueto-Felgueroso
,
L.
,
Colominas
,
I.
,
Gomez
,
H.
,
Navarrina
,
F.
, and
Casteleiro
,
M.
,
2009
, “
On the Accuracy of Finite Volume and Discontinuous Galerkin Discretizations for Compressible Flow on Unstructured Grids
,”
Int. J. Numer. Methods Eng.
,
78
(
13
), pp.
1553
1584
.
21.
Saad
,
Y.
, and
Schultz
,
M. H.
,
1986
, “
GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems
,”
SIAM J. Sci. Stat. Comput.
,
7
(
3
), pp.
856
869
.
22.
Fraysse
,
F.
,
de Vicente
,
J.
, and
Valero
,
E.
,
2012
, “
The Estimation of Truncation Error by τ-Estimation Revisited
,”
J. Comput. Phys.
,
231
(
9
), pp.
3457
3482
.
23.
Burgess
,
N. K.
, and
Mavriplis
,
D. J.
,
2012
, “
High-Order Discontinuous Galerkin Methods for Turbulent High-Lift Flows
,”
Seventh International Conference on Computational Fluid Dynamics
, Big Island, HI, Paper No. ICCFD7-4202.
24.
Salari
,
K.
, and
Knupp
,
P.
,
2000
, “
Code Verification by the Method of Manufactured Solutions
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND 2000-1444.
25.
Aftosmis
,
M.
,
Gaitonde
,
D.
, and
Tavares
,
T. S.
,
1995
, “
Behavior of Linear Reconstruction Techniques on Unstructured Meshes
,”
AIAA J.
,
33
(
11
), pp.
2038
2049
.
You do not currently have access to this content.