The objective of this investigation is to verify a new total Lagrangian continuum-based fluid model that can be used to solve two- and three-dimensional fluid–structure interaction problems. Large rotations and deformations experienced by the fluid can be captured effectively using the finite element (FE) absolute nodal coordinate formulation (ANCF). ANCF elements can describe arbitrarily complex fluid shapes without imposing any restriction on the amount of rotation and deformation within the finite element, ensure continuity of the time-rate of position vector gradients at the nodal points, and lead to a constant mass matrix regardless of the magnitude of the fluid displacement. Fluid inertia forces are computed, considering the change in the fluid geometry as the result of the large displacements. In order to verify the ANCF solution, the dam-break benchmark problem is solved in the two- and three-dimensional cases. The motion of the fluid free surface is recorded before and after the impact on a vertical wall placed at the end of the dam dry deck. The results are in good agreement with those obtained by other numerical methods. The results obtained in this investigation show that the number of degrees-of-freedom (DOF) required for ANCF convergence is around one order of magnitude less than what is required by other existing methods. Limitations and advantages of the verified ANCF fluid model are discussed.

References

References
1.
Donea
,
J.
, and
Huerta
,
A.
,
2003
,
Finite Element Methods for Flow Problems
,
Wiley
,
Chichester, UK
.
2.
Chan
,
R. K. C.
, and
Street
,
R. L.
,
1970
, “
A Computer Study of Finite-Amplitude Water Waves
,”
J. Comput. Phys.
,
6
(
1
), pp.
68
94
.
3.
Harlow
,
F. H.
, and
Welch
,
J. E.
,
1965
, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface
,”
Phys. Fluids
,
8
(
12
), pp.
2182
2189
.
4.
Hirt
,
C. W.
, and
Cook
,
J. L.
,
1972
, “
Calculating Three-Dimensional Flows Around Structures and Over Rough Terrain
,”
J. Comput. Phys.
,
10
(
2
), pp.
324
340
.
5.
Ramshaw
,
J. D.
, and
Trapp
,
J. A.
,
1976
, “
A Numerical Technique for Low-Speed Homogeneous Two-Phase Flow With Sharp Interfaces
,”
J. Comput. Phys.
,
21
(
4
), pp.
438
453
.
6.
Nakayama
,
T.
, and
Mori
,
M.
,
1996
, “
An Eulerian Finite Element Method for Time‐Dependent Free Surface Problems in Hydrodynamics
,”
Int. J. Numer. Methods Fluids
,
22
(
3
), pp.
175
194
.
7.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
8.
Kim
,
M. S.
, and
Lee
,
W. I.
,
2003
, “
A New VOF‐Based Numerical Scheme for the Simulation of Fluid Flow With Free Surface—Part I: New Free Surface‐Tracking Algorithm and Its Verification
,”
Int. J. Numer. Methods Fluids
,
42
(
7
), pp.
765
790
.
9.
Rider
,
W. J.
, and
Kothe
,
D. B.
,
1998
, “
Reconstructing Volume Tracking
,”
J. Comput. Phys.
,
141
(
2
), pp.
112
152
.
10.
Rudman
,
M.
,
1997
, “
Volume-Tracking Methods for Interfacial Flow Calculations
,”
Int. J. Numer. Methods Fluids
,
24
(
7
), pp.
671
691
.
11.
Soo Kim
,
M.
,
Sun Park
,
J.
, and
Lee
,
W. I.
,
2003
, “
A New VOF‐Based Numerical Scheme for the Simulation of Fluid Flow With Free Surface—Part II: Application to the Cavity Filling and Sloshing Problems
,”
Int. J. Numer. Methods Fluids
,
42
(
7
), pp.
791
812
.
12.
Viecelli
,
J. A.
,
1969
, “
A Method for Including Arbitrary External Boundaries in the MAC Incompressible Fluid Computing Technique
,”
J. Comput. Phys.
,
4
(
4
), pp.
543
551
.
13.
Hirt
,
C. W.
,
Amsden
,
A. A.
, and
Cook
,
J. L.
,
1997
, “
An Arbitrary Lagrangian–Eulerian Computing Method for All Flow Speeds
,”
J. Comput. Phys.
,
135
(
2
), pp.
203
216
.
14.
Hughes
,
T. J.
,
Liu
,
W. K.
, and
Zimmermann
,
T. K.
,
1981
, “
Lagrangian-Eulerian Finite Element Formulation for Incompressible Viscous Flows
,”
Comput. Methods Appl. Mech. Eng.
,
29
(
3
), pp.
329
349
.
15.
Navti
,
S. E.
,
Ravindran
,
K.
,
Taylor
,
C.
, and
Lewis
,
R. W.
,
1997
, “
Finite Element Modelling of Surface Tension Effects Using a Lagrangian-Eulerian Kinematic Description
,”
Comput. Methods Appl. Mech. Eng.
,
147
(
1–2
), pp.
41
60
.
16.
Oñate
,
E.
, and
García
,
J.
,
2001
, “A Finite Element Method for Fluid--Structure Interaction With Surface Waves Using a Finite Calculus Formulation,”
Comput. Methods Appl. Mech. Eng.
, 191(6–7), pp. 635–660.
17.
Soulaimani
,
A.
, and
Saad
,
Y.
,
1998
, “
An Arbitrary Lagrangian-Eulerian Finite Element Method for Solving Three-Dimensional Free Surface Flows
,”
Comput. Methods Appl. Mech. Eng.
,
162
(
1–4
), pp.
79
106
.
18.
Belytschko
,
T.
,
Liu
,
W. K.
,
Moran
,
B.
, and
Elkhodary
,
K.
,
2013
,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
,
New York
.
19.
Adami
,
S.
,
Hu
,
X. Y.
, and
Adams
,
N. A.
,
2012
, “
A Generalized Wall Boundary Condition for Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
,
231
(
21
), pp.
7057
7075
.
20.
Colagrossi
,
A.
, and
Landrini
,
M.
,
2003
, “
Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
,
191
(
2
), pp.
448
475
.
21.
Colagrossi
,
A.
,
2005
, “A Meshless Lagrangian Method for Free–Surface and Interface Flows With Fragmentation,”
Ph.D. thesis
, Università di Roma
,
Rome, Italy
.http://cfd.mace.manchester.ac.uk/sph/SPH_PhDs/2003/Colagrossi_PHD_Thesis.pdf
22.
González
,
D.
,
Cueto
,
E.
,
Chinesta
,
F.
, and
Doblaré
,
M.
,
2007
, “
A Natural Element Updated Lagrangian Strategy for Free-Surface Fluid Dynamics
,”
J. Comput. Phys.
,
223
(
1
), pp.
127
150
.
23.
Kondo
,
M.
, and
Koshizuka
,
S.
,
2011
, “
Improvement of Stability in Moving Particle Semi‐Implicit Method
,”
Int. J. Numer. Methods Fluids
,
65
(
6
), pp.
638
654
.
24.
Monaghan
,
J. J.
, and
Gingold
,
R. A.
,
1983
, “
Shock Simulation by the Particle Method SPH
,”
J. Comput. Phys.
,
52
(
2
), pp.
374
389
.
25.
Monaghan
,
J. J.
, and
Kocharyan
,
A.
,
1995
, “
SPH Simulation of Multi-Phase Flow
,”
Comput. Phys. Commun.
,
87
(
1–2
), pp.
225
235
.
26.
Monaghan
,
J. J.
, and
Kos
,
A.
,
1999
, “
Solitary Waves on a Cretan Beach
,”
J. Waterw., Port, Coastal, Ocean Eng.
,
125
(
3
), pp.
145
155
.
27.
Monaghan
,
J. J.
,
1988
, “
An Introduction to SPH
,”
Comput. Phys. Commun.
,
48
(
1
), pp.
89
96
.
28.
Monaghan
,
J. J.
,
1992
, “
Smoothed Particle Hydrodynamics
,”
Annu. Rev. Astron. Astrophys.
,
30
(
1
), pp.
543
574
.
29.
Monaghan
,
J. J.
,
1994
, “
Simulating Free Surface Flows With SPH
,”
J. Comput. Phys.
,
110
(
2
), pp.
399
406
.
30.
Monaghan
,
J. J.
,
Cas
,
R. A. F.
,
Kos
,
A. M.
, and
Hallworth
,
M.
,
1999
, “
Gravity Currents Descending a Ramp in a Stratified Tank
,”
J. Fluid Mech.
,
379
, pp.
39
69
.
31.
Shao
,
S.
, and
Lo
,
E. Y.
,
2003
, “
Incompressible SPH Method for Simulating Newtonian and Non-Newtonian Flows With a Free Surface
,”
Adv. Water Resour.
,
26
(
7
), pp.
787
800
.
32.
Nayroles
,
B.
,
Touzot
,
G.
, and
Villon
,
P.
,
1992
, “
Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements
,”
Comput. Mech.
,
10
(
5
), pp.
307
318
.
33.
Pape
,
D.
,
Thornton
,
B.
, and
Yugulis
,
K.
,
2016
, “
Slosh Characteristics of Aggregated Intermediate Bulk Containers on Single-Unit Trucks
,”
Federal Motor Carrier Safety Administration
,
U.S. Department of Transportation
,
Washington, DC
.
34.
Cheli
,
F.
,
D'Alessandro
,
V.
,
Premoli
,
A.
, and
Sabbioni
,
E.
,
2013
, “
Simulation of Sloshing in Tank Trucks
,”
Int. J. Heavy Veh. Syst.
,
20
(
1
), pp.
1
18
.
35.
Elliott
,
A. S.
,
Slattengren
,
J.
, and
Buijk
,
A.
,
2006
, “Fully Coupled Fluid/Mechanical Response Prediction for Truck-Mounted Tank Sloshing Using Cosimulation of MSC.ADAMS® and MSC.Dytran®,”
SAE
Paper No. 2006-01-0932.
36.
Barton
,
M. S.
,
Corson
,
D.
,
Quigley
,
J.
,
Emami
,
B.
, and
Kush
,
T.
,
2014
, “Tanker Truck Sloshing Simulation Using Bi-Directionally Coupled CFD and Multi-Body Dynamics Solvers,”
SAE
Paper No. 2014-01-2442.
37.
Wei
,
C.
,
Wang
,
L.
, and
Shabana
,
A. A.
,
2015
, “
A Total Lagrangian ANCF Liquid Sloshing Approach for Multibody System Applications
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051014
.
38.
Shi
,
H.
,
Wang
,
L.
,
Nicolsen
,
B.
, and
Shabana
,
A. A.
,
2017
, “
Integration of Geometry and Analysis for the Study of Liquid Sloshing in Railroad Vehicle Dynamics
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
231
(
4
), pp. 608–629.
39.
Nicolsen
,
B.
,
Wang
,
L.
, and
Shabana
,
A.
,
2017
, “
Nonlinear Finite Element Analysis of Liquid Sloshing in Complex Vehicle Motion Scenarios
,”
J. Sound Vib.
,
405
, pp.
208
233
.
40.
Abdolmaleki
,
K.
,
Thiagarajan
,
K. P.
, and
Morris-Thomas
,
M. T.
,
2004
, “
Simulation of the Dam Break Problem and Impact Flows Using a Navier–Stokes Solver
,”
Simulations
,
13
, p.
17
. http://people.eng.unimelb.edu.au/imarusic/proceedings/15/AFMC00031.pdf
41.
Brufau
,
P.
, and
Garcia-Navarro
,
P.
,
2000
, “
Two-Dimensional Dam Break Flow Simulation
,”
Int. J. Numer. Methods Fluids
,
33
(
1
), pp.
35
57
.
42.
Huerta
,
A.
, and
Liu
,
W. K.
,
1988
, “
Viscous Flow With Large Free Surface Motion
,”
Comput. Methods Appl. Mech. Eng.
,
69
(
3
), pp.
277
324
.
43.
Korobkin
,
A.
, and
Yilmaz
,
O.
,
2009
, “
The Initial Stage of Dam-Break Flow
,”
J. Eng. Math.
,
63
(
2–4
), pp.
293
308
.
44.
Rakhsha
,
M.
,
Pazouki
,
A.
, and
Negrut
,
D.
,
2016
, “Incompressible Implicit SPH,” Technical Report No.
TR03
.http://sbel.wisc.edu/documents/TR-2016-03.pdf
45.
Rumold
,
W.
,
2001
, “
Modeling and Simulation of Vehicles Carrying Liquid Cargo
,”
Multibody Syst. Dyn.
,
5
(
4
), pp.
351
374
.
46.
Shin
,
S.
, and
Lee
,
W. I.
,
2000
, “
Finite Element Analysis of Incompressible Viscous Flow With Moving Free Surface by Selective Volume of Fluid Method
,”
Int. J. Heat Fluid Flow
,
21
(
2
), pp.
197
206
.
47.
Stansby
,
P. K.
,
Chegini
,
A.
, and
Barnes
,
T. C. D.
,
1998
, “
The Initial Stages of Dam-Break Flow
,”
J. Fluid Mech.
,
374
, pp.
407
424
.
48.
Wang
,
S. P.
, and
Wang
,
K. K.
,
1994
, “
A Net Inflow Method for Incompressible Viscous Flow With Moving Free Surface
,”
Int. J. Numer. Methods Fluids
,
18
(
7
), pp.
669
694
.
49.
Martin
,
J. C.
, and
Moyce
,
W. J.
,
1952
, “
Part IV—An Experimental Study of the Collapse of Liquid Columns on a Rigid Horizontal Plane
,”
Philos. Trans. R. Soc. London A: Math., Phys. Eng. Sci.
,
244
(
882
), pp.
312
324
.
50.
Shabana
,
A. A.
,
2017
,
Computational Continuum Mechanics
,
3rd ed.
,
Wiley
,
Chichester, UK
.
51.
Langtangen
,
H. P.
,
Mardal
,
K. A.
, and
Winther
,
R.
,
2002
, “
Numerical Methods for Incompressible Viscous Flow
,”
Adv. Water Resour.
,
25
(
8
), pp.
1125
1146
.
52.
González
,
J. A.
,
Lee
,
Y. S.
, and
Park
,
K. C.
,
2017
, “
Stabilized Mixed Displacement–Pressure Finite Element Formulation for Linear Hydrodynamic Problems With Free Surfaces
,”
Comput. Methods Appl. Mech. Eng.
,
319
, pp.
314
337
.
53.
Kim
,
N. H.
,
2014
,
Introduction to Nonlinear Finite Element Analysis
,
Springer Science & Business Media
,
New York
.
54.
Jun
,
L.
,
1988
, “
Numerical Simulation of Flow With Moving Interface
,”
PhysicoChemical Hydrodyn.
,
10
(
5
), p.
625
.
55.
Okamoto
,
T.
, and
Kawahara
,
M.
,
1990
, “
Two‐Dimensional Sloshing Analysis by Lagrangian Finite Element Method
,”
Int. J. Numer. Methods Fluids
,
11
(
5
), pp.
453
477
.
56.
Ramaswamy
,
B.
,
Kawahara
,
M.
, and
Nakayama
,
T.
,
1986
, “
Lagrangian Finite Element Method for the Analysis of Two‐Dimensional Sloshing Problems
,”
Int. J. Numer. Methods Fluids
,
6
(
9
), pp.
659
670
.
57.
Sung
,
J.
,
Choi
,
H. G.
, and
Yoo
,
J. Y.
,
1999
, “
Finite Element Simulation of Thin Liquid Film Flow and Heat Transfer Including a Hydraulic Jump
,”
Int. J. Numer. Methods Eng.
,
46
(
1
), pp.
83
101
.
58.
Shabana
,
A. A.
,
Zaazaa
,
K. E.
, and
Sugiyama
,
H.
,
2008
,
Railroad Vehicle Dynamics: A Computational Approach
,
CRC
,
Boca Raton, FL
.
59.
Olshevskiy
,
A.
,
Dmitrochenko
,
O.
, and
Kim
,
C.
,
2013
, “
Three- and Four-Noded Planar Elements Using Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
29
(
3
), pp.
255
269
.
60.
Lobovský
,
L.
,
Botia-Vera
,
E.
,
Castellana
,
F.
,
Mas-Soler
,
J.
, and
Souto-Iglesias
,
A.
,
2014
, “
Experimental Investigation of Dynamic Pressure Loads During Dam Break
,”
J. Fluids Struct.
,
48
, pp.
407
434
.
61.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
.
62.
López-Villa
,
A.
,
Zamudio
,
L. S.
, and
Medina
,
A.
,
2014
, “
The Boundary Element Method in Fluid Mechanics: Application to Bubble Growth
,”
Experimental and Computational Fluid Mechanics
,
Springer International Publishing
,
Cham, Switzerland
, pp.
17
48
.
63.
McDonald
,
P. W.
,
1971
, “The Computation of Transonic Flow Through Two-Dimensional Gas Turbine Cascades,”
ASME
Paper No. 71-GT-89.
64.
MacCormack
,
R.
, and
Paullay
,
A.
,
1972
, “Computational Efficiency Achieved by Time Splitting of Finite Difference Operators,”
AIAA
Paper No. 72-154.
65.
Fluent,
2001
,
FLUENT 6 User's Guide
,
Fluent Inc.
,
Canonsburg, PA
.
66.
Olshevskiy
,
A.
,
Dmitrochenko
,
O.
, and
Kim
,
C. W.
,
2013
, “
Three-Dimensional Solid Brick Element Using Slopes in the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021001
.
67.
Ketabdari
,
M. J.
, and
Roozbahani
,
A. N.
,
2013
, “
Numerical Simulation of Plunging Wave Breaking by the Weakly Compressible Smoothed Particle Hydrodynamic Method
,”
J. Appl. Mech. Tech. Phys.
,
54
(
3
), pp.
477
486
.
68.
Pathak
,
A.
, and
Raessi
,
M.
,
2016
, “
A 3D, Fully Eulerian, VOF-Based Solver to Study the Interaction Between Two Fluids and Moving Rigid Bodies Using the Fictitious Domain Method
,”
J. Comput. Phys.
,
311
, pp.
87
113
.
69.
Ahn
,
H. T.
,
Shashkov
,
M.
, and
Christon
,
M. A.
,
2009
, “
The Moment‐of‐Fluid Method in Action
,”
Int. J. Numer. Methods Biomed. Eng.
,
25
(
10
), pp.
1009
1018
.
71.
Ransing
,
R. S.
,
Savino
,
S.
, and
Lewis
,
R. W.
,
2005
, “
Numerical Optimization of Tilt Casting Process
,”
Int. J. Cast Met. Res.
,
18
(
2
), pp.
109
118
.
72.
Cruchaga
,
M. A.
,
Celentano
,
D. J.
, and
Tezduyar
,
T. E.
,
2005
, “
Moving-Interface Computations With the Edge-Tracked Interface Locator Technique (ETILT)
,”
Int. J. Numer. Methods Fluids
,
47
(
6–7
), pp.
451
469
.
You do not currently have access to this content.