Numerical codes are important in providing solutions to partial differential equations in many areas, such as the heat transfer problem. However, verification of these codes is critical. A methodology is presented in this work as an intrinsic verification method (IVM) to the solution to the partial differential equation. Derivation of the dimensionless form of scaled sensitivity coefficients is presented, and the sum of scaled sensitivity coefficients is used in the dimensionless form to provide a method for verification. Intrinsic verification methodology is demonstrated using examples of heat transfer problems in Cartesian and cylindrical coordinate. The IVM presented here is applicable to analytical as well as numerical solutions to partial differential equations.

References

References
1.
Salari
,
K.
, and
Knupp
,
P.
,
2000
, “Code Verification by the Method of Manufactured Solutions,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2000-1444
.
2.
Roy
,
C. J.
,
2005
, “
Review of Code and Solution Verification Procedures for Computational Simulation
,”
J. Comput. Phys.
,
205
(
1
), pp.
131
156
.
3.
ASME
,
2009
, “
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,”
American Society of Mechanical Engineers
,
New York
, Standard No. V&V 20-2009.
4.
Beck
,
J. V.
,
McMasters
,
R.
,
Dowding
,
K. J.
, and
Amos
,
D. E.
,
2006
, “
Intrinsic Verification Methods in Linear Heat Conduction
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
2984
2994
.
5.
Beck
,
J. V.
,
1970
, “
Nonlinear Estimation Applied to the Nonlinear Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
13
(
4
), pp.
703
716
.
6.
Beck
,
J. V.
, and
Arnold
,
K. J.
,
1977
,
Parameter Estimation in Engineering and Science
,
Wiley
,
New York
.
7.
Blackwell
,
B. F.
,
Dowding
,
K. J.
, and
Cochran
,
R. J.
,
1999
, “
Development and Implementation of Sensitivity Coefficient Equation for Heat Conduction Problems
,”
Numer. Heat Transfer, Part B: Fundam.
,
36
(
1
), pp.
15
32
.
8.
Sun
,
N.
,
Sun
,
N. Z.
,
Elimelech
,
M.
, and
Ryan
,
J. N.
,
2001
, “
Sensitivity Analysis and Parameter Identifiability for Colloid Transport in Geochemically Heterogeneous Porous Media
,”
Water Resour. Res.
,
37
(
2
), pp.
209
222
.
9.
Chen
,
B.
, and
Tong
,
L.
,
2004
, “
Sensitivity Analysis of Heat Conduction for Functionally Graded Materials
,”
Mater. Des.
,
25
(
8
), pp.
663
672
.
10.
Beck
,
J. V.
,
1967
, “
Transient Sensitivity Coefficients for the Thermal Contact Conductance
,”
Int. J. Heat Mass Transfer
,
10
(
11
), pp.
1615
1617
.
11.
Dowding
,
K. J.
,
Blackwell
,
B. F.
, and
Cochran
,
R. J.
,
1999
, “
Application Sensitivity Coefficients Heat Conduction Problems
,”
Numer. Heat Transfer, Part B: Fundam.
,
36
(
1
), pp.
33
55
.
12.
Beck
,
J. V.
,
1969
, “
Determination of Optimum, Transient Experiments for Thermal Contact Conductance
,”
Int. J. Heat Mass Transfer
,
12
(
5
), pp.
621
633
.
13.
Beck
,
J. V.
, and
Woodbury
,
K. A.
,
1998
, “
Inverse Problems and Parameter Estimation: Integration of Measurements and Analysis
,”
Meas. Sci. Technol.
,
9
(
6
), p.
839
.
14.
Dolan
,
K.
,
Valdramidis
,
V.
, and
Mishra
,
D.
,
2012
, “
Parameter Estimation for Dynamic Microbial Inactivation; Which Model, Which Precision?
,”
Food Control
,
29
(
2
), pp.
401
408
.
15.
Koda
,
M.
,
Dogru
,
A. H.
, and
Seinfeld
,
J. H.
,
1979
, “
Sensitivity Analysis of Partial Differential Equations With Application to Reaction and Diffusion Processes
,”
J. Comput. Phys.
,
30
(
2
), pp.
259
282
.
16.
Beck
,
J. V.
, and
Litkouhi
,
B.
,
1988
, “
Heat Conduction Numbering System for Basic Geometries
,”
Int. J. Heat Mass Transfer
,
31
(
3
), pp.
505
515
.
17.
Dunker
,
A. M.
,
1984
, “
The Decoupled Direct Method for Calculating Sensitivity Coefficients in Chemical Kinetics
,”
J. Chem. Phys.
,
81
(
5
), pp.
2385
2393
.
18.
Martins
,
J.
,
Kroo
,
I. M.
, and
Alonso
,
J. J.
,
2000
, “An Automated Method for Sensitivity Analysis Using Complex Variables,”
AIAA
Paper No. 2000-0689.
You do not currently have access to this content.