This work is concerned with the use of Guderley's converging shock wave solution of the inviscid compressible flow equations as a verification test problem for compressible flow simulation software. In practice, this effort is complicated by both the semi-analytical nature and infinite spatial/temporal extent of this solution. Methods can be devised with the intention of ameliorating this inconsistency with the finite nature of computational simulation; the exact strategy will depend on the code and problem archetypes under investigation. For example, scale-invariant shock wave propagation can be represented in Lagrangian compressible flow simulations as rigid boundary-driven flow, even if no such “piston” is present in the counterpart mathematical similarity solution. The purpose of this work is to investigate in detail the methodology of representing scale-invariant shock wave propagation as a piston-driven flow in the context of the Guderley problem, which features a semi-analytical solution of infinite spatial/temporal extent. The semi-analytical solution allows for the derivation of a similarly semi-analytical piston boundary condition (BC) for use in Lagrangian compressible flow solvers. The consequences of utilizing this BC (as opposed to directly initializing the Guderley solution in a computational spatial grid at a fixed time) are investigated in terms of common code verification analysis metrics (e.g., shock strength/position errors, global convergence rates). For the examples considered in this work, the piston-driven initialization approach is demonstrated to be a viable alternative to the more traditional, direct initialization approach.

References

References
1.
Sedov
,
L.
,
1959
,
Similarity and Dimensional Methods in Mechanics
,
Academic Press
,
New York
.
2.
Barenblatt
,
G.
,
1996
,
Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics
,
Cambridge University Press
,
Cambridge, UK
.
3.
Axford
,
R.
,
2000
, “
Solutions of the Noh Problem for Various Equations of State Using Lie Groups
,”
Lasers Part. Beams
,
18
(
1
), pp.
93
100
.
4.
Zel'dovich
,
Y.
, and
Raizer
,
Y.
,
2002
,
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena
,
Dover Publications
,
Mineola, NY
.
5.
Ramsey
,
S.
,
Kamm
,
J.
, and
Bolstad
,
J.
,
2012
, “
The Guderley Problem Revisited
,”
Int. J. Comp. Fluid Dyn.
,
26
(
2
), pp.
79
99
.
6.
Coggeshall
,
S.
,
1991
, “
Analytic Solutions of Hydrodynamics Equations
,”
Phys. Fluids A
,
3
(
5
), p.
757
.
7.
Oberkampf
,
W.
,
Trucano
,
T.
, and
Hirsh
,
C.
,
2004
, “
Verification, Validation, and Predictive Capability in Computational Engineering and Physics
,”
ASME Appl. Mech. Rev.
,
57
(
5
), pp.
345
384
.
8.
Roy
,
C.
,
2005
, “
Review of Code and Solution Verification Procedures for Computational Simulation
,”
J. Comp. Phys.
,
205
(
1
), pp.
131
156
.
9.
Guderley
,
G.
,
1942
, “
Starke Kugelige und Zylindrische Verdichtungsstöβe in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse
,”
Luftfahrtforschung
,
19
, p.
302
.
10.
Stanyukovich
,
K.
,
1970
,
Unsteady Motion of Continuous Media
,
Pergammon Press
,
New York
.
11.
Lazarus
,
R.
, and
Richtmyer
,
R.
,
1977
, “
Similarity Solutions for Converging Shocks
,” Los Alamos National Laboratory, Los Alamos, NM, Report No.
LA-6823-MS
.
12.
Lazarus
,
R.
,
1981
, “
Self-Similar Solutions for Converging Shocks and Collapsing Cavities
,”
SIAM J. Numer. Anal.
,
18
(
2
), pp.
316
371
.
13.
Sachdev
,
P.
,
2004
,
Shock Waves and Explosions
,
Chapman & Hall/CRC
,
Boca Raton, FL
.
14.
Chisnell
,
R.
,
1998
, “
An Analytic Description of Converging Shock Waves
,”
J. Fluid Mech.
,
354
(
10
), pp.
357
375
.
15.
Meyer-ter-Vehn
,
J.
, and
Schalk
,
C.
,
1982
, “
Selfsimilar Spherical Compression Waves in Gas Dynamics
,”
Z. Naturforsch., A
,
37
(
8
), pp.
954
970
.
16.
Boyd
,
Z.
,
Ramsey
,
S. D.
, and
Baty
,
R. S.
,
2016
, “
On the Existence of Self-Similar Converging Shocks for an Arbitrary Equation of State
,” Los Alamos National Laboratory, Los Alamos, NM, Report No.
LA-UR-16-27312
.
17.
Fujimoto, Y.
, and
Mishkin, E. A.
,
1978
, “
Analysis of Spherically Imploding Shocks
,”
Phys. Fluids
,
21
(11), p.
1933
.
18.
Lazarus
,
R.
,
1980
, “
Comments on ‘Analysis of Spherical Imploding Shocks’
,”
Phys. Fluids
,
23
(
4
), p.
844
.
19.
Yousaf
,
M.
,
1986
, “
Imploding Spherical and Cylindrical Shocks
,”
Phys. Fluids
,
29
(
3
), p.
680
.
20.
Landau
,
L.
, and
Lifshitz
,
E.
,
1987
,
Fluid Mechanics
,
2nd ed.
,
Pergamon Press
,
Oxford, UK
.
21.
Taylor
,
G.
,
1950
, “
The Formation of a Blast Wave by a Very Intense Explosion—Part I: Theoretical Discussion
,”
Proc. R. Soc. London, Ser. A
,
201
(
1065
), pp.
159
174
.
22.
Korobeĭnikov
,
V.
,
1991
,
Problems of Point Blast Theory
,
Springer
,
New York
.
23.
Hutchens
,
G.
,
1990
, “
Finite-Strength Shock Propagation for Alternative Equations of State
,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, IL.
24.
Hornung
,
H.
,
Pullin
,
D.
, and
Ponchaut
,
N.
,
2008
, “
On the Question of Universality of Imploding Shock Waves
,”
Acta Mech.
,
201
(
1–4
), pp.
31
35
.
25.
Burton
,
D.
,
1990
, “
Conservation of Energy, Momentum, and Angular Momentum in Lagrangian Staggered-Grid Hydrodynamics
,” Lawrence Livermore National Laboratory, Livermore, CA, Report No.
UCRL-JC-195926
.
26.
Caramana
,
E.
,
Burton
,
D.
,
Shashkov
,
M.
, and
Whalen
,
P.
,
1998
, “
The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy
,”
J. Comp. Phys.
,
146
(
1
), pp.
227
262
.
27.
Caramana
,
E.
,
Shashkov
,
M.
, and
Whalen
,
P.
,
1998
, “
Formulations of Artificial Viscosity for Multi-Dimensional Shock Wave Computations
,”
J. Comp. Phys.
,
144
(
1
), pp.
70
97
.
28.
Morgan
,
N.
,
2013
, “
A Dissipation Model for Staggered Grid Lagrangian Hydrodynamics
,”
Comput. Fluids
,
83
, pp.
48
57
.
29.
Morgan
,
N.
,
Lipnikov
,
K.
,
Burton
,
D.
, and
Kenamond
,
M.
,
2014
, “
A Lagrangian Staggered Grid Godunov-Like Approach for Hydrodynamics
,”
J. Comp. Phys.
,
259
, pp.
568
597
.
30.
Banks
,
J.
,
Aslam
,
T.
, and
Rider
,
W.
,
2008
, “
On Sub-Linear Convergence for Linearly Degenerate Waves in Capturing Schemes
,”
J. Comp. Phys.
,
227
(
14
), pp.
6985
7002
.
31.
Majda
,
A.
, and
Ralston
,
J.
,
1979
, “
Discrete Shock Profiles for Systems of Conservation Laws
,”
Comm. Pure Appl. Math.
,
32
(
4
), pp.
445
482
.
32.
Runnels
,
S.
, and
Margolin
,
L.
,
2013
, “
An Integrated Study of Numerical Shock Shape, Artificial Viscosity, and Plasticity
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR-13-24226.
33.
LeVeque
,
R.
,
2002
,
Finite Volume Methods for Hyperbolic Problems
,
Cambridge University Press
,
Cambridge, UK
.
34.
Arora
,
M.
, and
Roe
,
P.
,
1997
, “
On Postshock Oscillations Due to Shock Capturing Schemes in Unsteady Flows
,”
J. Comp. Phys.
,
130
(
1
), pp.
25
40
.
35.
Noh
,
W.
,
1987
, “
Errors for Calculations of Strong Shocks Using an Artificial Viscosity and an Artificial Heat Flux
,”
J. Comp. Phys.
,
72
(
1
), pp.
78
120
.
36.
Rider
,
W.
,
2000
, “
Revisiting Wall Heating
,”
J. Comp. Phys.
,
162
(
2
), pp.
395
410
.
37.
Kamm
,
J.
,
Rider
,
W.
, and
Brock
,
J.
,
2003
, “
Combined Space and Time Convergence Analysis of a Compressible Flow Algorithm
,”
AIAA
Paper No. 2003-4241.
38.
Doebling
,
S.
, and
Ramsey
,
S.
,
2013
, “
Impact of Artificial Viscosity Models on Verification Assessment of a Lagrangian Hydrodynamics Code Using the Sedov Problem
,” Los Alamos National Laboratory, Los Alamos, NM, Report No.
LA-UR-13-23559
.
39.
Pederson
,
C.
,
Brown
,
B.
, and
Morgan
,
N.
,
2016
, “
The Sedov Blast Wave as a Radial Piston Verification Test
,”
ASME J. Verif. Valid. Uncertainty Quantif.
,
1
(
3
), p.
031001
.
40.
Caramana
,
E.
, and
Whalen
,
P.
,
1998
, “
Numerical Preservation of Symmetry Properties of Continuum Problems
,”
J. Comp. Phys.
,
141
(
2
), pp.
174
198
.
41.
Caramana
,
E. J.
, and
Shashkov
,
M. J.
,
1998
, “
Elimination of Artificial Grid Distortion and Hourglass-Type Motions by Means of Lagrangian Subzonal Masses and Pressures
,”
J. Comp. Phys.
,
142
(
2
), pp.
521
561
.
You do not currently have access to this content.