Model validation is a vital step in the simulation development process to ensure that a model is truly representative of the system that it is meant to model. One aspect of model validation that deserves special attention is when validation is required for the transient phase of a process. The transient phase may be characterized as the dynamic portion of a signal that exhibits nonstationary behavior. A specific concern associated with validating a model's transient phase is that the experimental system data are often contaminated with noise, due to the short duration and sharp variations in the data, thus hiding the underlying signal which models seek to replicate. This paper proposes a validation process that uses wavelet thresholding as an effective method for denoising the system and model data signals to properly validate the transient phase of a model. This paper utilizes wavelet thresholded signals to calculate a validation metric that incorporates shape, phase, and magnitude error. The paper compares this validation approach to an approach that uses wavelet decompositions to denoise the data signals. Finally, a simulation study and empirical data from an automobile crash study illustrates the advantages of our wavelet thresholding validation approach.

References

References
1.
Sargent
,
R. G.
,
2013
, “
Verification and Validation of Simulation Models
,”
J. Simul.
,
7
(
1
), pp.
12
24
.
2.
Oberkampf
,
W. L.
, and
Trucano
,
T. G.
,
2000
, “
Validation Methodology in Computational Fluid Dynamics
,”
AIAA
Paper No. 2000-2549.
3.
ASME
,
2009
, “
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,” American Society of Mechanical Engineers, New York, Standard No.
ASME VV 20-2009
.
4.
Jauregui
,
R.
,
Riu
,
P. J.
, and
Silva
,
F.
,
2010
, “
Transient FDTD Simulation Validation
,”
IEEE International Symposium on Electromagnetic Compatibility
(
EMC
), Fort Lauderdale, FL, July 25–30, pp.
257
262
.
5.
Balci
,
O.
,
2003
, “
Verification, Validation, and Certification of Modeling and Simulation Applications
,”
IEEE Winter Simulation Conference
(
WSC
), New Orleans, LA, Dec. 7–10, pp.
150
158
.
6.
Balci
,
O.
,
2013
, “
Verification, Validation, and Testing
,”
Encyclopedia of Operations Research and Management Science
,
3rd ed.
,
Springer
,
New York
, pp.
1618
1627
.
7.
Kleijnen
,
J. P.
,
1995
, “
Verification and Validation of Simulation Models
,”
Eur. J. Oper. Res.
,
82
(
1
), pp.
145
162
.
8.
Law
,
A. M.
,
2013
,
Simulation Modeling and Analysis
,
5th ed.
,
McGraw-Hill
,
New York
.
9.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
1980
,
Engineering Applications of Correlation and Spectral Analysis
,
1st ed.
,
Wiley-Interscience
,
New York
.
10.
Box
,
G. E.
,
Jenkins
,
G. M.
, and
Reinsel
,
G. C.
,
2008
,
Time Series Analysis: Forecasting and Control
,
4th ed.
,
Wiley
,
New York
.
11.
Naylor
,
T. H.
, and
Finger
,
J. M.
,
1967
, “
Verification of Computer Simulation Models
,”
Manage. Sci.
,
14
(
2
), pp.
B92
B101
.
12.
Bayarri
,
M. J.
,
Berger
,
J. O.
,
Paulo
,
R.
,
Sacks
,
J.
,
Cafeo
,
J. A.
,
Cavendish
,
J.
,
Lin
,
C.-H.
, and
Tu
,
J.
,
2012
, “
A Framework for Validation of Computer Models
,”
J. Technometrics
,
49
(
2
), pp.
138
154
.
13.
Jiang
,
X.
, and
Mahadevan
,
S.
,
2011
, “
Wavelet Spectrum Analysis Approach to Model Validation of Dynamic Systems
,”
Mech. Syst. Signal Process.
,
25
(
2
), pp.
575
590
.
14.
Jiang
,
X.
, and
Mahadevan
,
S.
,
2008
, “
Bayesian Wavelet Method for Multivariate Model Assessment of Dynamic Systems
,”
J. Sound Vib.
,
312
(
4
), pp.
694
712
.
15.
ASME
,
2006
, “
Guide for Verification and Validation in Computational Solid Mechanics
,” American Society of Mechanical Engineers, New York, Standard No.
ASME VV 10-2006
.
16.
Oberkampf
,
W. L.
, and
Barone
,
M. F.
,
2006
, “
Measures of Agreement Between Computation and Experiment: Validation Metrics
,”
J. Comput. Phys.
,
217
(
1
), pp.
5
36
.
17.
Sprague
,
M. A.
, and
Geers
,
T. L.
,
2004
, “
A Spectral-Element Method for Modelling Cavitation in Transient Fluid-Structure Interaction
,”
Int. J. Numer. Methods Eng.
,
60
(
15
), pp.
2467
2499
.
18.
Russell
,
D. M.
,
1997
, “
Error Measures for Comparing Transient Data: Part 1: Development of a Comprehensive Error Measure
,”
68th Shock and Vibration Symposium
, Hunt Valley, MD, Nov. 3–6, pp.
175
184
.
19.
Whang
,
B.
,
Gilbert
,
W. E.
, and
Zilliacus
,
S.
,
1994
, “
Two Visually Meaningful Correlation Measures for Comparing Calculated and Measured Response Histories
,”
Shock Vib.
,
1
(
4
), pp.
303
316
.
20.
Schwer
,
L. E.
,
2007
, “
Validation Metrics for Response Histories: Perspectives and Case Studies
,”
Eng. Comput.
,
23
(
4
), pp.
295
309
.
21.
Sarin
,
H.
,
Kokkolaras
,
M.
,
Hulbert
,
G.
,
Papalambros
,
P.
,
Barbat
,
S.
, and
Yang
,
R.-J.
,
2010
, “
Comparing Time Histories for Validation of Simulation Models: Error Measures and Metrics
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
6
), p.
061401
.
22.
Cheng
,
Z.
,
Pellettiere
,
J.
, and
Wright
,
N.
,
2006
, “
Wavelet-Based Test-Simulation Correlation Analysis for the Validation of Biodynamical Modeling
,”
24th Conference and Exposition on Structural Dynamics
, St. Louis, MO, Jan. 30–Feb. 2, pp.
2124
2132
.
23.
Ogden
,
T.
,
1997
,
Essential Wavelets for Statistical Applications and Data Analysis
,
1st ed.
,
Birkhauser
,
Boston, MA
.
24.
Burrus
,
C. S.
,
Gopinath
,
R. A.
, and
Guo
,
H.
,
1998
,
Introduction to Wavelets and Wavelet Transforms
,
1st ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
25.
Chui
,
C. K.
,
1992
,
An Introduction to Wavelets
,
1st ed.
,
Academic Press
,
Boston, MA
.
26.
Misiti
,
M.
,
Misiti
,
Y.
,
Oppenheim
,
G.
, and
Poggi
,
J.-M.
,
1997
,
Wavelet Toolbox Getting Started Guide
,
1st ed.
,
Mathworks, Natick
,
MA
.
27.
Donoho
,
D. L.
, and
Johnstone
,
J. M.
,
1994
, “
Ideal Spatial Adaptation by Wavelet Shrinkage
,”
Biometrika
,
81
(
3
), pp.
425
455
.
28.
McGinnity
,
K.
,
Varbanov
,
R.
, and
Chicken
,
E.
,
2017
, “
Cross-Validated Wavelet Block Thresholding for Non-Gaussian Errors
,”
Comput. Stat. Data Anal.
,
106
, pp.
127
137
.
You do not currently have access to this content.