A new Richardson extrapolation-based uncertainty estimator is developed which utilizes a global order of accuracy. The most significant difference between the proposed uncertainty estimator (referred to as the global deviation uncertainty estimator) and others in the literature is that we compute uncertainty estimates at all cells/nodes in the domain regardless of the local convergence behavior (i.e., even if the local solution is oscillatory with grid refinement). Various metrics are used to quantitatively calibrate and evaluate the uncertainty estimator compared to the true solution. The metrics are used to assess the global deviation uncertainty estimator compared to other commonly used uncertainty estimators of the same type such as the original grid convergence index (GCI) and the factor of safety method. Four two-dimensional, steady, inviscid flow fields with exact solutions are used to calibrate the parameters in the proposed uncertainty estimator and make up about 30% of the total solution data set. The evaluation data set is composed of several additional steady, two-dimensional and three-dimensional solutions computed using different computational fluid dynamics codes with exact solutions including a zero pressure gradient turbulent flat plate with a well-defined numerical benchmark. All solutions are formally first- or second-order accurate. The global deviation uncertainty estimator is developed using an empirical approach with a focus on local variables and shows significant improvement compared to existing extrapolation-based uncertainty estimates, even when applied to regions where the local convergence behavior is divergent or oscillatory.

References

References
1.
Naumovich
,
A.
,
Foerster
,
M.
, and
Dwight
,
R.
,
2009
, “
Algebraic Multigrid Within Defect Correction for the Linearized Euler Equations
,”
Numer. Linear Algebra Appl.
,
17
(2–3), pp.
307
324
.
2.
Qin
,
Y.
,
Chi
,
K.
, and
Shih
,
T. I.-P.
,
2006
, “
Modeling the Residual in Error-Transport Equations for Estimating Grid-Induced Errors in CFD Solutions
,”
AIAA
Paper No. AIAA-2006-892.
3.
Shih
,
T. I.-P.
, and
Williams
,
B. R.
,
2009
, “
Development and Evaluation of an a Posteriori Method for Estimating and Correcting Grid-Induced Errors in Solutions of the Navier-Stokes Equations
,”
AIAA
Paper No. AIAA-2009-1499.
4.
Richardson
,
L. F.
,
1911
, “
The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, With an Application to the Stresses in a Masonry Dam
,”
Philos. Trans. R. Soc. London. Ser. A
,
210
(459–470), pp.
307
357
.
5.
Roache
,
P. J.
, and
Knupp
,
P. M.
,
1993
, “
Completed Richardson Extrapolation
,”
Commun. Numer. Methods Eng.
,
9
(
5
), pp.
365
374
.
6.
Richards
,
S. A.
,
1997
, “
Completed Richardson Extrapolation in Space and Time
,”
Commun. Numer. Methods Eng.
,
13
(
7
), pp.
573
582
.
7.
Fehlberg
,
E.
,
1969
, “
Low-Order Classical Runge-Kutta Formulas With Step Size Control and Their Application to Some Heat Transfer Problems
,” NACA Technical Report No. 315.
8.
Zienkiewicz
,
O. C.
, and
Zhu
,
J. Z.
,
1987
, “
A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis
,”
Int. J. Numer Methods Eng.
,
24
(
2
), pp.
337
357
.
9.
Zienkiewicz
,
O. C.
, and
Zhu
,
J. Z.
,
1992
, “
The Superconvergent Patch Recovery and a Posteriori Error Estimates—Part 2: Error Estimates and Adaptivity
,”
Int. J. Numer. Methods Eng.
,
33
(
7
), pp.
1365
1382
.
10.
Eça
,
L.
, and
Hoekstra
,
M.
,
2009
, “
Evaluation of Numerical Error Estimation Based on Grid Refinement Studies With the Method of the Manufactured Solutions
,”
Comput. Fluids
,
38
(
8
), pp.
1580
1591
.
11.
Roache
,
P. J.
,
1994
, “
Perspective: A Method of Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.
12.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H. W.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
13.
Cosner
,
R. R.
,
Oberkampf
,
W. L.
,
Rumsey
,
C. L.
,
Rahaim
,
C. P.
, and
Shih
,
T. I.-P.
,
2006
, “
AIAA Committee on Standards for Computational Fluid Dynamics: Status and Plans
,”
AIAA
Paper No. AIAA-2006-889.
14.
Roache
,
P. J.
,
2009
,
Fundamentals of Verification and Validation
,
Hermosa Publishers
,
Albuquerque, NM
.
15.
Phillips
,
T. S.
, and
Roy
,
C. J.
,
2014
, “
Richardson Extrapolation-Based Discretization Uncertainty Estimation for Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
136
(
12
), pp.
121401
121411
.
16.
Phillips
,
T. S.
,
Derlaga
,
J. M.
,
Roy
,
C. J.
, and
Borggaard
,
J.
,
2012
, “
Finite Volume Solution Reconstruction Methods for Truncation Error Estimation
,”
AIAA
Paper No. AIAA-2013-3090.
17.
Banks
,
J. W.
,
Aslam
,
T.
, and
Rider
,
W. J.
,
2008
, “
On Sub-Linear Convergence for Linearly Degenerate Waves in Capturing Schemes
,”
J. Comput. Phys.
,
227
(
14
), pp.
6985
7002
.
18.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
.
19.
Roache
,
P. J.
,
2003
, “
Error Bars for CFD
,”
AIAA
Paper No. AIAA-2003-408.
20.
Phillips
,
T. S.
, and
Roy
,
C. J.
,
2011
, “
Residual Methods for Discretization Error Estimation
,”
AIAA
Paper No. AIAA-2011-3870.
21.
Roache
,
P. J.
,
1998
, “
Verification of Codes and Calculations
,”
AIAA J.
,
36
(
5
), pp.
696
702
.
22.
Cadafalch
,
J.
,
Perez-Segarra
,
C. D.
,
Consul
,
R.
, and
Oliva
,
A.
,
2002
, “
Verification of Finite Volume Computations on Steady-State Fluid Flow and Heat Transfer
,”
ASME J. Fluid Eng.
,
124
(
1
), pp.
11
21
.
23.
Phillips
,
T. S.
,
2012
, “
Extrapolation-Based Discretization Error and Uncertainty for Problems in Computational Fluid Dynamics
,” Master’s thesis, Virgina Tech, Blacksburg, VA.
24.
Xing
,
T.
, and
Stern
,
F.
,
2010
, “
Factors of Safety for Richardson Extrapolation
,”
ASME J. Fluid Eng.
,
132
(
6
), p.
61403
.
25.
Celik
,
I. B.
, and
Karatekin
,
O.
,
1997
, “
Numerical Experiments on Application of Richardson Extrapolation With Nonuniform Grids
,”
ASME J. Fluid Eng.
,
119
(
3
), pp.
584
590
.
26.
Ainsworth
,
M.
, and
Oden
,
J. T.
,
2000
,
A Posteriori Error Estimation in Finite Element Analysis
,
Wiley
,
New York
.
27.
Stern
,
F.
,
Wilson
,
R. V.
,
Coleman
,
H. W.
, and
Paterson
,
E. G.
,
2001
, “
Comprehensive Approach to Verification and Validation of CFD Simulations—Part 1: Methodology and Procedures
,”
ASME J. Fluid Eng.
,
123
(
4
), pp.
793
802
.
28.
Satav
,
V.
,
Hixon
,
R.
,
Nallasamy
,
M.
, and
Sawyer
,
S.
,
2005
, “
Validation of a Computational Aeroacoustics Code for Nonlinear Flow About Complex Geometries Using Ringleb’s Flow
,”
AIAA
Paper No. AIAA-2005-2871.
29.
Ollivier-Gooch
,
C.
,
Nejat
,
A.
, and
Michalak
,
K.
,
2009
, “
Obtaining and Verifying Higher-Order Unstructured Finite Volume Solutions to the Euler Equations
,”
AIAA J.
,
47
(
9
), pp.
2105
2120
.
30.
Luke
,
E. A.
,
Tong
,
X.
,
Wu
,
J.
, and
Cinnella
,
P.
,
2010
, “
Chem 3.2: A Finite-Rate Viscous Chemistry Solver—The User Guide
,” Tetra Research Corporation, Milwaukee, WI.
31.
Luke
,
E.
, and
George
,
T.
,
2005
, “
Loci: A Rule-Based Framework for Parallel Multidisciplinary Simulation Synthesis
,”
J. Funct. Program.
,
15
(
3
), pp.
477
502
.
32.
Choudhary
,
A.
,
Roy
,
C. J.
, and
Luke
,
E. A.
,
2011
, “
Issues in Verifying Boundary Conditions for 3D Unstructured CFD Codes
,”
AIAA
Paper No. AIAA Paper 2011-3864.
33.
Tendean
,
E.
,
Roy
,
C. J.
, and
Luke
,
E.
,
2007
, “
Verification of RANS Turbulence Models in Loci/Chem Using the Method of Manufactured Solutions
,”
AIAA
Paper No. AIAA-2007-4203.
34.
Veluri
,
S. P.
,
2010
, “
Code Verification and Numerical Accuracy Assessment for Finite Volume CFD Codes
,” Ph.D. thesis, Virginia Tech, Blacksburg, VA.
35.
Veluri
,
S. P.
,
Roy
,
C. J.
,
Herbert
,
S.
, and
Luke
,
E.
,
2008
, “
Verification of the Loci-Chem CFD Code Using the Method of Manufactured Solutions
,”
AIAA
Paper No. AIAA-2008-661.
36.
Veluri
,
S. P.
,
Roy
,
C. J.
, and
Luke
,
E.
,
2010
, “
Comprehensive Code Verification for an Unstructured Finite Volume CFD Code
,”
AIAA
Paper No. AIAA-2010-127.
37.
Veluri
,
S. P.
,
Roy
,
C. J.
, and
Luke
,
E. A.
,
2012
, “
Comprehensive Code Verification Techniques for Finite Volume CFD Codes
,”
Comput. Fluids
,
70
(
30
), pp.
59
72
.
38.
Eça
,
L.
, and
Hoekstra
,
M.
,
2005
, “
Workshops on CFD Uncertainty Analysis
,” Marine Environment and Technology Center, Technical University of Lisbon, Lisbon, Portugal, last accessed Jan. 17, 2017, http://maretec.ist.utl.pt/html_files/CFD_Workshops.htm
39.
Hoekstra
,
M.
, and
Eça
,
L.
,
1998
, “
Parnassos: An Efficient Method for Ship Stern Flow Calculation
,”
3rd Osaka Colloquium
, Osaka, Japan, pp.
331
357
.
40.
Eça
,
L.
,
2010
, “
Uncertainty Quantification for CFD
,” personal communication.
You do not currently have access to this content.