Uncertainties in simulation models arise not only from the parameters that are used within the model, but also due to the modeling process itself—specifically the identification of a model that most accurately predicts the true physical response of interest. In risk-analysis studies, it is critical to consider the effect that all forms of uncertainty have on the overall level of uncertainty. This work develops an approach to quantify the effect of both parametric and model-form uncertainties. The developed approach is demonstrated on the assessment of the fatigue-based risk associated with a reactor pressure vessel subjected to a thermal shock event.

References

References
1.
Odette
,
G. R.
, and
Lucas
,
G. E.
,
2001
, “
Embrittlement of Nuclear Reactor Pressure Vessels
,”
JOM
,
53
(
7
), pp.
18
22
.
2.
Pate-Cornell
,
M. E.
,
1996
, “
Uncertainties in Risk Analysis: Six Levels of Treatment
,”
Reliab. Eng. Syst. Saf.
,
54
(
1
), pp.
95
111
.
3.
Oberkampf
,
W. L.
,
Helton
,
J. C.
,
Joslyn
,
C. A.
,
Wojkiewicz
,
S. F.
, and
Ferson
,
S.
,
2004
, “
Challenge Problems: Uncertainty in System Response Given Uncertain Parameters
,”
Reliab. Eng. Syst. Saf.
,
85
(
1–3
), pp.
11
19
.
4.
Droguett
,
E. L.
, and
Mosleh
,
A.
,
2008
, “
Bayesian Methodology for Model Uncertainty Using Model Performance Data
,”
Risk Anal.
,
28
(
5
), pp.
1457
1476
.
5.
Ching
,
J.
,
Line
,
H. D.
, and
Yen
,
M. T.
,
2009
, “
Model Selection Issue in Calibrating Reliability-Based Resistance Factors Based on Geotechnical In-Situ Test Data
,”
Struct. Saf.
,
31
(
5
), pp.
420
431
.
6.
Park
,
I.
,
Amarchinta
,
H. K.
, and
Grandhi
,
R. V.
,
2010
, “
A Bayesian Approach for Quantification of Model Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
95
(
1
), pp.
777
785
.
7.
Riley
,
M. E.
,
2015
, “
Evidence-Based Quantification of Uncertainties Induced via Simulation-Based Modeling
,”
Reliab. Eng. Syst. Saf.
,
133
(
1
), pp.
79
86
.
8.
Kline
,
S. J.
,
1985
, “
The Purpose of Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
153
160
.
9.
Dickson
,
T.
,
Williams
,
P. T.
, and
Yin
,
S.
,
2012
, “
Fracture Analysis of Vessels—Oak Ridge, FAVOR, v12.1, Computer Code: User's Guide
,” Technical Report, Oak Ridge National Laboratory, Oak Ridge, TN,
Report No. ORNL/TM-2012/566
.
10.
Buckner
,
H. F.
, “
A Novel Principle for the Computation of Stress Intensity Factors
,”
Z. Angew. Math. Mech.
,
50
(
1
), pp.
529
546
.
11.
Spencer
,
B.
,
Backman
,
M.
,
Hoffman
,
W.
, and
Chakraborty
,
P.
,
2015
, “
Reactor Pressure Vessel Integrity Assessments With the Grizzly Simulation Code
,”
23rd Structural Mechanics in Reactor Technology Conference
, Manchester, UK.
12.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.
,
63
(
3
), pp.
425
464
.
13.
Riley
,
M. E.
, and
Grandhi
,
R. V.
,
2011
, “
Quantification of Model-Form and Predictive Uncertainty for Multi-Physics Simulation
,”
Comput. Struct.
,
89
(
1
), pp.
1206
1213
.
14.
Park
,
I.
, and
Grandhi
,
R. V.
,
2012
, “
Quantification of Model-Form and Parametric Uncertainty Using Evidence Theory
,”
Struct. Saf.
,
39
(
1
), pp.
44
51
.
15.
Dempster
,
A. P.
,
1968
, “
A Generalization of Bayesian Inference
,”
J. R. Stat. Soc.
,
30
(
1
), pp.
205
247
.
16.
Shafer
,
G. A.
,
1976
,
A Generalization of Bayesian Inference
,
Princeton University Press
,
Princeton, NJ
.
17.
Sentz
,
K.
, and
Ferson
,
S.
,
2002
, “
Combination of Evidence in Dempster-Shafer Theory
,” Sandia National Laboratories, Albuquerque, NM,
Report No. SAND 2002-0835
.
18.
Smets
,
P.
,
1993
, “
Belief Functions: The Disjunctive Rule of Combination and the Generalized Bayesian Theorem
,”
Int. J. Approximate Reasoning
,
9
(
1
), pp.
1
35
.
19.
Teferra
,
K.
,
Shields
,
M.
,
Hapij
,
A.
, and
Daddazio
,
R.
,
2014
, “
Mapping Model Validation Metrics to Subject Matter Expert Scores for Model Adequacy Assessment
,”
Reliab. Eng. Syst. Saf.
,
132
(
1
), pp.
9
19
.
20.
Wasserman
,
L.
,
2000
, “
Bayesian Model Selection and Model Averaging
,”
J. Math. Psychol.
,
44
(
1
), pp.
92
107
.
21.
Eldred
,
M. S.
,
Swiler
,
L. P.
, and
Tang
,
G.
,
2011
, “
Mixed Aleatory-Epistemic Uncertainty Quantification With Stochastic Expansions and Optimization-Based Interval Estimation
,”
Reliab. Eng. Syst. Saf.
,
96
(
9
), pp.
1092
1113
.
22.
Shah
,
H.
,
Hosder
,
S.
, and
Winter
,
T.
,
2015
, “
A Mixed Uncertainty Quantification Approach Using Evidence Theory and Stochastic Expansions
,”
Int. J. Uncertainty Quantif.
,
5
(
1
), pp.
21
48
.
You do not currently have access to this content.